Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (7): 20250053.doi: 10.7503/cjcu20250053
• Organic Chemistry • Previous Articles Next Articles
WU Junhui1, WU Jiajia1, PAN Shuangye2, CHEN Jianai1(), TAN Chengxia1(
)
Received:
2025-02-26
Online:
2025-07-10
Published:
2025-04-09
Contact:
TAN Chengxia
E-mail:chenjianai@zjut.edu.cn;tanchengxia@zjut.edu.cn
Supported by:
CLC Number:
TrendMD:
WU Junhui, WU Jiajia, PAN Shuangye, CHEN Jianai, TAN Chengxia. Semi-continuous Flow Synthesis of 2-Methyl-5-aminophenol[J]. Chem. J. Chinese Universities, 2025, 46(7): 20250053.
Entry | Temperature/℃ | Molar ratio | Pression/MPa | Residence time/s | Conversion(%) * |
---|---|---|---|---|---|
1 | 15 | 1∶8 | 1.0 | 60 | 11.45 |
2 | 25 | 1∶8 | 1.0 | 60 | 100 |
3 | 35 | 1∶8 | 1.0 | 60 | 96.31 |
4 | 45 | 1∶8 | 1.0 | 60 | 96.06 |
5 | 25 | 1∶1 | 1.0 | 60 | 54.12 |
6 | 25 | 1∶3 | 1.0 | 60 | 81.52 |
7 | 25 | 1∶5 | 1.0 | 60 | 96.83 |
8 | 25 | 1∶7 | 1.0 | 60 | 98.91 |
9 | 25 | 1∶8 | 0.5 | 60 | 98.81 |
10 | 25 | 1∶8 | 2.0 | 60 | 99.64 |
11 | 25 | 1∶8 | 3.0 | 60 | 98.74 |
12 | 25 | 1∶8 | 4.0 | 60 | 95.25 |
13 | 25 | 1∶8 | 1.0 | 90 | 100 |
14 | 25 | 1∶8 | 1.0 | 70 | 100 |
15 | 25 | 1∶8 | 1.0 | 50 | 100 |
16 | 25 | 1∶8 | 1.0 | 30 | 100 |
17 | 25 | 1∶8 | 1.0 | 20 | 79.53 |
Table 1 Optimization of the conditions for the synthesis of compound 6
Entry | Temperature/℃ | Molar ratio | Pression/MPa | Residence time/s | Conversion(%) * |
---|---|---|---|---|---|
1 | 15 | 1∶8 | 1.0 | 60 | 11.45 |
2 | 25 | 1∶8 | 1.0 | 60 | 100 |
3 | 35 | 1∶8 | 1.0 | 60 | 96.31 |
4 | 45 | 1∶8 | 1.0 | 60 | 96.06 |
5 | 25 | 1∶1 | 1.0 | 60 | 54.12 |
6 | 25 | 1∶3 | 1.0 | 60 | 81.52 |
7 | 25 | 1∶5 | 1.0 | 60 | 96.83 |
8 | 25 | 1∶7 | 1.0 | 60 | 98.91 |
9 | 25 | 1∶8 | 0.5 | 60 | 98.81 |
10 | 25 | 1∶8 | 2.0 | 60 | 99.64 |
11 | 25 | 1∶8 | 3.0 | 60 | 98.74 |
12 | 25 | 1∶8 | 4.0 | 60 | 95.25 |
13 | 25 | 1∶8 | 1.0 | 90 | 100 |
14 | 25 | 1∶8 | 1.0 | 70 | 100 |
15 | 25 | 1∶8 | 1.0 | 50 | 100 |
16 | 25 | 1∶8 | 1.0 | 30 | 100 |
17 | 25 | 1∶8 | 1.0 | 20 | 79.53 |
Entry | Temperature/℃ | Molar ratio | Pression/Mpa | Residence time/s | Conversion(%) * |
---|---|---|---|---|---|
1 | 25 | 1∶8 | 1.0 | 60 | 96.01 |
2 | 25 | 1∶8 | 1.5 | 60 | 92.11 |
3 | 25 | 1∶8 | 2.0 | 60 | 91.41 |
4 | 25 | 1∶8 | 3.0 | 60 | 90.47 |
5 | 25 | 1∶8 | 4.0 | 60 | 89.61 |
6 | 10 | 1∶8 | 1.0 | 60 | 90.89 |
7 | 20 | 1∶8 | 1.0 | 60 | 98.74 |
8 | 30 | 1∶8 | 1.0 | 60 | 100 |
9 | 40 | 1∶8 | 1.0 | 60 | 100 |
10 | 25 | 1∶1 | 1.0 | 60 | 43.91 |
11 | 25 | 1∶3 | 1.0 | 60 | 58.60 |
12 | 25 | 1∶5 | 1.0 | 60 | 73.69 |
13 | 25 | 1∶7 | 1.0 | 60 | 83.12 |
14 | 25 | 1∶9 | 1.0 | 60 | 92.67 |
15 | 25 | 1∶8 | 1.0 | 20 | 45.78 |
16 | 25 | 1∶8 | 1.0 | 40 | 70.98 |
17 | 25 | 1∶8 | 1.0 | 70 | 95.26 |
18 | 25 | 1∶8 | 1.0 | 100 | 100 |
19 | 25 | 1∶8 | 1.0 | 120 | 100 |
Table 2 Optimization of the conditions for the synthesis of compound 1
Entry | Temperature/℃ | Molar ratio | Pression/Mpa | Residence time/s | Conversion(%) * |
---|---|---|---|---|---|
1 | 25 | 1∶8 | 1.0 | 60 | 96.01 |
2 | 25 | 1∶8 | 1.5 | 60 | 92.11 |
3 | 25 | 1∶8 | 2.0 | 60 | 91.41 |
4 | 25 | 1∶8 | 3.0 | 60 | 90.47 |
5 | 25 | 1∶8 | 4.0 | 60 | 89.61 |
6 | 10 | 1∶8 | 1.0 | 60 | 90.89 |
7 | 20 | 1∶8 | 1.0 | 60 | 98.74 |
8 | 30 | 1∶8 | 1.0 | 60 | 100 |
9 | 40 | 1∶8 | 1.0 | 60 | 100 |
10 | 25 | 1∶1 | 1.0 | 60 | 43.91 |
11 | 25 | 1∶3 | 1.0 | 60 | 58.60 |
12 | 25 | 1∶5 | 1.0 | 60 | 73.69 |
13 | 25 | 1∶7 | 1.0 | 60 | 83.12 |
14 | 25 | 1∶9 | 1.0 | 60 | 92.67 |
15 | 25 | 1∶8 | 1.0 | 20 | 45.78 |
16 | 25 | 1∶8 | 1.0 | 40 | 70.98 |
17 | 25 | 1∶8 | 1.0 | 70 | 95.26 |
18 | 25 | 1∶8 | 1.0 | 100 | 100 |
19 | 25 | 1∶8 | 1.0 | 120 | 100 |
Entry | Molar ratio of nitric acid to 2-methylaniline | Conversion(%) | Relative content of compound 4(%) * | Relative content of compound 8(%) * |
---|---|---|---|---|
1 | 1∶1.00 | 93.3 | 77.2 | 16.0 |
2 | 1∶1.05 | 94.5 | 78.2 | 16.0 |
3 | 1∶1.10 | 95.3 | 79.1 | 16.1 |
4 | 1∶1.15 | 97.2 | 80.5 | 16.3 |
5 | 1∶1.20 | 100 | 83.2 | 16.8 |
Table 3 Optimization of nitric acid concentration for the synthesis of compound 4
Entry | Molar ratio of nitric acid to 2-methylaniline | Conversion(%) | Relative content of compound 4(%) * | Relative content of compound 8(%) * |
---|---|---|---|---|
1 | 1∶1.00 | 93.3 | 77.2 | 16.0 |
2 | 1∶1.05 | 94.5 | 78.2 | 16.0 |
3 | 1∶1.10 | 95.3 | 79.1 | 16.1 |
4 | 1∶1.15 | 97.2 | 80.5 | 16.3 |
5 | 1∶1.20 | 100 | 83.2 | 16.8 |
Entry | Temperature/℃ | Conversion(%) | Relative content of compound 4(%)* | Relative content of compound 8(%) * | Isomer ratio |
---|---|---|---|---|---|
1 | 5 | 83.5 | 70.8 | 12.6 | 5.6 |
2 | 10 | 93.7 | 79.0 | 14.6 | 5.4 |
3 | 15 | 95.3 | 80.1 | 15.2 | 5.3 |
4 | 20 | 100 | 83.3 | 16.7 | 5.0 |
5 | 25 | 100 | 82.8 | 17.2 | 4.8 |
Table 4 Optimization of temperature for the synthesis of compound 4
Entry | Temperature/℃ | Conversion(%) | Relative content of compound 4(%)* | Relative content of compound 8(%) * | Isomer ratio |
---|---|---|---|---|---|
1 | 5 | 83.5 | 70.8 | 12.6 | 5.6 |
2 | 10 | 93.7 | 79.0 | 14.6 | 5.4 |
3 | 15 | 95.3 | 80.1 | 15.2 | 5.3 |
4 | 20 | 100 | 83.3 | 16.7 | 5.0 |
5 | 25 | 100 | 82.8 | 17.2 | 4.8 |
Entry | Residence time/min | Conversion(%) | Relative content of compound 4(%) * | Relative content of compound 8(%) * |
---|---|---|---|---|
1 | 8.00 | 70.7 | 58.9 | 11.8 |
2 | 7.00 | 88.1 | 72.7 | 15.4 |
3 | 5.84 | 85.5 | 70.2 | 14.6 |
4 | 3.90 | 94.0 | 77.0 | 17.4 |
5 | 2.92 | 98.4 | 81.5 | 17.0 |
6 | 2.34 | 99.8 | 81.4 | 16.9 |
7 | 1.95 | 100 | 82.2 | 17.8 |
Table 5 Optimization of residence time for the synthesis of compound 4
Entry | Residence time/min | Conversion(%) | Relative content of compound 4(%) * | Relative content of compound 8(%) * |
---|---|---|---|---|
1 | 8.00 | 70.7 | 58.9 | 11.8 |
2 | 7.00 | 88.1 | 72.7 | 15.4 |
3 | 5.84 | 85.5 | 70.2 | 14.6 |
4 | 3.90 | 94.0 | 77.0 | 17.4 |
5 | 2.92 | 98.4 | 81.5 | 17.0 |
6 | 2.34 | 99.8 | 81.4 | 16.9 |
7 | 1.95 | 100 | 82.2 | 17.8 |
Entry | Reagent | Tempereture/℃ | Molar ratio | Conversion(%) | Relative content(%) b |
---|---|---|---|---|---|
1 | NaNO2 | 40 | 1∶1.00 | 92.7 | 88.6 |
2 | NaNO2 | 40 | 1∶1.10 | 97.2 | 92.0 |
3 | NaNO2 | 40 | 1∶1.20 | 98.8 | 93.6 |
4 | NaNO2 | 40 | 1∶1.30 | 100 | 92.5 |
5 | NaNO2 | 40 | 1∶1.40 | 99.6 | 94.0 |
6 | NOHSO4 | 40 | 1∶1.00 | 95.4 | 92.1 |
7 | NOHSO4 | 40 | 1∶1.05 | 100 | 98.6 |
8 | NOHSO4 | -10 | 1∶1.05 | 86.0 | 80.7 |
9 | NOHSO4 | 0 | 1∶1.05 | 91.5 | 87.0 |
10 | NOHSO4 | 10 | 1∶1.05 | 96.7 | 92.1 |
11 | NOHSO4 | 15 | 1∶1.05 | 99.4 | 95.5 |
12 | NOHSO4 | 25 | 1∶1.05 | 100 | 95.4 |
13 | NOHSO4 | 50 | 1∶1.05 | 99.7 | 91.4 |
Table 6 Optimization of reaction conditions for the synthesis of compound 3 a
Entry | Reagent | Tempereture/℃ | Molar ratio | Conversion(%) | Relative content(%) b |
---|---|---|---|---|---|
1 | NaNO2 | 40 | 1∶1.00 | 92.7 | 88.6 |
2 | NaNO2 | 40 | 1∶1.10 | 97.2 | 92.0 |
3 | NaNO2 | 40 | 1∶1.20 | 98.8 | 93.6 |
4 | NaNO2 | 40 | 1∶1.30 | 100 | 92.5 |
5 | NaNO2 | 40 | 1∶1.40 | 99.6 | 94.0 |
6 | NOHSO4 | 40 | 1∶1.00 | 95.4 | 92.1 |
7 | NOHSO4 | 40 | 1∶1.05 | 100 | 98.6 |
8 | NOHSO4 | -10 | 1∶1.05 | 86.0 | 80.7 |
9 | NOHSO4 | 0 | 1∶1.05 | 91.5 | 87.0 |
10 | NOHSO4 | 10 | 1∶1.05 | 96.7 | 92.1 |
11 | NOHSO4 | 15 | 1∶1.05 | 99.4 | 95.5 |
12 | NOHSO4 | 25 | 1∶1.05 | 100 | 95.4 |
13 | NOHSO4 | 50 | 1∶1.05 | 99.7 | 91.4 |
Entry | Mass fraction of H2SO4(%) | Temperature/℃ | Conversion(%) | Relative content(%) b |
---|---|---|---|---|
1 | 90 | 80 | 99.7 | 92.6 |
2 | 80 | 80 | 99.8 | 92.6 |
3 | 70 | 80 | 100 | 92.3 |
4 | 60 | 80 | 100 | 91.5 |
5 | 50 | 80 | 100 | 91.4 |
6 | 40 | 80 | 96.7 | 84.4 |
7 | 70 | 70 | 91.5 | 87.5 |
8 | 70 | 85 | 100 | 94.2 |
9 | 70 | 90 | 99.7 | 93.5 |
10 | 70 | 100 | 100 | 94.0 |
11 | 70 | 110 | 100 | 94.1 |
12 | 70 | 120 | 100 | 93.7 |
Table 7 Optimization of reaction conditions for the synthesis of compound 2 a
Entry | Mass fraction of H2SO4(%) | Temperature/℃ | Conversion(%) | Relative content(%) b |
---|---|---|---|---|
1 | 90 | 80 | 99.7 | 92.6 |
2 | 80 | 80 | 99.8 | 92.6 |
3 | 70 | 80 | 100 | 92.3 |
4 | 60 | 80 | 100 | 91.5 |
5 | 50 | 80 | 100 | 91.4 |
6 | 40 | 80 | 96.7 | 84.4 |
7 | 70 | 70 | 91.5 | 87.5 |
8 | 70 | 85 | 100 | 94.2 |
9 | 70 | 90 | 99.7 | 93.5 |
10 | 70 | 100 | 100 | 94.0 |
11 | 70 | 110 | 100 | 94.1 |
12 | 70 | 120 | 100 | 93.7 |
No. | Step | Temperature/℃ | Pression/MPa | Molar ratio | Residence time/min | Relative content(%) | Space⁃time yield/(g·L-1·h-1) |
---|---|---|---|---|---|---|---|
1 | Batch | 70 | 1.5 | 1∶5.50 | 120 | 96.2 | 0.3 |
Continuous | 25 | 1.0 | 1∶8.00 | 0.5 | 99.8 | 1.4 | |
2 | Batch | -10 | — | 1∶1.05 | 240 | 85.3 | 35.5 |
Continuous | 20 | — | 1∶1.20 | 1.9 | 83.2 | 368.9 | |
3 | Batch | 25 | — | 1∶1.05 | 180 | 98.6 | 34.5 |
4 | Batch | 85 | — | — | 180 | 94.2 | 21.1 |
5 | Batch | 90 | 2.0 | 1∶6.33 | 120 | 97.8 | 0.28 |
Continuous | 25 | 1.0 | 1∶8.00 | 1.6 | 99.9 | 0.58 |
Table 8 Comparison between batch and self-continuous procedures for the synthesis of 2-methyl-5-aminophenol
No. | Step | Temperature/℃ | Pression/MPa | Molar ratio | Residence time/min | Relative content(%) | Space⁃time yield/(g·L-1·h-1) |
---|---|---|---|---|---|---|---|
1 | Batch | 70 | 1.5 | 1∶5.50 | 120 | 96.2 | 0.3 |
Continuous | 25 | 1.0 | 1∶8.00 | 0.5 | 99.8 | 1.4 | |
2 | Batch | -10 | — | 1∶1.05 | 240 | 85.3 | 35.5 |
Continuous | 20 | — | 1∶1.20 | 1.9 | 83.2 | 368.9 | |
3 | Batch | 25 | — | 1∶1.05 | 180 | 98.6 | 34.5 |
4 | Batch | 85 | — | — | 180 | 94.2 | 21.1 |
5 | Batch | 90 | 2.0 | 1∶6.33 | 120 | 97.8 | 0.28 |
Continuous | 25 | 1.0 | 1∶8.00 | 1.6 | 99.9 | 0.58 |
Step | AE(%) | RME(%) | PMI | E |
---|---|---|---|---|
1 | 74.8 | 69.3 | 0.69 | 1.7 |
2 | 89.4 | 71.8 | 0.88 | 3.0 |
3 | 99.3 | 59.3 | 0.08 | 1.5 |
4 | 51.9 | 11.7 | 4.67 | 8.6 |
5 | 77.4 | 72.7 | 1.36 | 1.4 |
Table 9 Sustainability metrics of the self-continuous flow synthesis of 2-methyl-5-aminophenol*
Step | AE(%) | RME(%) | PMI | E |
---|---|---|---|---|
1 | 74.8 | 69.3 | 0.69 | 1.7 |
2 | 89.4 | 71.8 | 0.88 | 3.0 |
3 | 99.3 | 59.3 | 0.08 | 1.5 |
4 | 51.9 | 11.7 | 4.67 | 8.6 |
5 | 77.4 | 72.7 | 1.36 | 1.4 |
[1] | Yuan H. Y., Yin W. H., Hu J. L., Li Y., Nat. Commun., 2023, 14(1), 1841 |
[2] | Li X. C., Cheng Y., Wang X. D., Tong S., Wang M. X., Chem. Sci., 2024, 15(10), 3610—3615 |
[3] | Fnaiche A., Mélin L., Suárez N. G., Paquin A., Vu V., Li F. L., Allali⁃Hassani A., Bolotokova A., Allemand F., Gelin M., Cotelle P., Woo S., LaPlante S. R., Barsyte⁃Lovejoy D., Santhakumar V., Vedadi M., Guichou J. F., Annabi B., Gagnon A., Bioorg. Med. Chem. Lett., 2023, 95, 129488 |
[4] | Raza M. A., Farwa U., Ashraf A., Poyraz E. B., Yesilbag S., Agar E., Al⁃Sehemi A. G., Spectrochim. Acta A, 2023, 299, 122864 |
[5] | Rak M., Menge A., Tesch R., Berger L. M., Balourdas D. I., Shevchenko E., Krämer A., Elson L., Berger B. T., Abdi I., Wahl L. M., Poso A., Kaiser A., Hanke T., Kronenberger T., Joerger A. C., Müller S., Knapp S., J. Med. Chem., 2024, 67(5), 3813—3842 |
[6] | Jiang D. L., Zhao X. Y., Chemical Safety Environment, 2024, 37(07), 30—37 |
江丹灵, 赵祥有. 化工安全与环境, 2024, 37(07), 30—37 | |
[7] | Yu H. W., Zhao J. Y., Zhou P. C., Yu Z. Q., Zhejiang Chemical Industry, 2020, 51(11), 26—31 |
俞航伟, 赵金阳, 周朋成, 余志群. 浙江化工, 2020, 51(11), 26—31 | |
[8] | Zeng L. Y., Mao M. Z., Wang W., Wang L., Zhang J. G., Ning B. K., Chemical Reagents, 2018, 40(11), 1054—1058 |
曾丽媛, 毛明珍, 王威, 王伦, 张建功, 宁斌科. 化学试剂, 2018, 40(11), 1054—1058 | |
[9] | Mo F. Y., Qiu D., Jiang Y. B., Zhang Y., Wang J. B., Tetrahedron Lett., 2011, 52(4), 518—522 |
[10] | Yu Z. Q., Lu G. J., Chen J. Y., Xie S. T., Su W. K., J. Flow Chem., 2018, 8(2), 51—57 |
[11] | Liu H., Liu D. M., Sun H. T., Xia C., Su X. B., Chem. J. Chinese Universities, 2024, 45(07), 20240024 |
刘豪, 刘冬梅, 孙浩田, 夏超, 苏贤斌. 高等学校化学学报, 2024, 45(7), 20240024 | |
[12] | Yang Q., Li W. Q., Huang S. T., Li J. P., Liu T., Huang C., Chem. J. Chinese Universities, 2023, 44(6), 20220671 |
杨棋, 李伟强, 黄顺桃, 李靖鹏, 刘腾, 黄超. 高等学校化学学报, 2023, 44(6), 20220671 | |
[13] | Li S. J., Yang Y., Cui Y. Y., Su X. B., Chem. J. Chinese Universities, 2020, 41(7), 1559—1566 |
李士杰, 杨洋, 崔营营, 苏贤斌. 高等学校化学学报, 2020, 41(7), 1559—1566 | |
[14] | Cameron A., Fisher B., Rizzacasa M., Tetrahedron, 2018, 74(12), 1203—1206 |
[15] | Cheng D., Chen F. E., Chemical Industry and Engineering Progress, 2019, 38(1), 556—575 |
程荡, 陈芬儿. 化工进展, 2019, 38(1), 556—575 | |
[16] | Deng H., Liao Q., Lin Y. B., Chin. J. Pharmaceuticals, 2005, 36(3), 140—147 |
邓洪, 廖齐, 林原斌. 中国医药工业杂志, 2005, 36(3), 140—147 | |
[17] | Lindeque R. M., Woodley J. M., Catalysts, 2019, 9(3), 262 |
[18] | Hu Y. J., Chen J., Wang Y. Q., Zhu N., Fang Z., Xu J. H., Guo K., Chem. Eng. J., 2022, 437, 135400 |
[19] | Sugisawa N., Nakamura H., Fuse S., Catalysts, 2020, 10(11), 1321 |
[20] | Campbell Z. S., Parker M., Bennett J. A., Yusuf S., Al-Rashdi A. K., Lustik J., Li F. X., Abolhasani M., Chem. Mater., 2018, 30(24), 8948—8958 |
[21] | Britton J., Raston C. L., Chem. Soc. Rev., 2017, 46(5), 1250—1271 |
[22] | Liu M. L., Wan L., Gao L., Cheng D., Jiang M. F., Chen F. E., ACS Sustain. Chem. Eng., 2023, 11(40), 14682—14690 |
[23] | Feng K. B., Chen J., Gu S. X., Wang H. F., Chen F. E., Chin. J. Org. Chem., 2024, 44(2), 378—397 |
冯康博, 陈炯, 古双喜, 王海峰, 陈芬儿. 有机化学, 2024, 44(2), 378—397 | |
[24] | Baumann M., Baxendale I. R., Beilstein J. Org. Chem., 2015, 11, 1194—1219 |
[25] | Baumann M., Moody T. S., Smyth M., Wharry S., Org. Process Res. Dev., 2020, 24(10), 1802—1813 |
[26] | Duan X. N., Yin J. B., Huang M. M., Wang P. X., Zhang J. S., Chem. Eng. Sci., 2022, 251, 117483 |
[27] | Rahman M. D. T., Wharry S., Smyth M., Manyar H., Moody T. S., Synlett, 2020, 31(6), 581—586 |
[28] | Song Q., Lei X. G., Yang S., Wang S., Wang J. H., Chen J. J., Xiang Y., Huang Q. W., Wang Z. Y., Molecules, 2022, 27(16), 5139 |
[29] | Jiang R., Dong Y. M., Yang J. H., Zhao T. S., Chen X. Q., Speciality Petrochemicals, 2013, 30(1), 12—16 |
蒋锐, 董燕敏, 杨金会, 赵天生, 陈兴权. 精细石油化工, 2013, 30(1), 12—16 | |
[30] | D'Attoma J., Camara T., Brun P. L., Robin Y., Bostyn S., Buron F., Routier S., Org. Process Res. Dev., 2017, 21(1), 44—51 |
[31] | Majeed M. H., Shayesteh P., Tunå P., Persson A. R., Gritcenko R., Wallenberg L. R., Ye L., Hulteberg C., Schnadt J., Wendt O. F., Chem. Eur. J., 2019, 25(59), 13591—13597 |
[32] | Akhtar R., Zahoor A. F., Rasool N., Ahmad M., Ali K. G., Mol. Divers., 2022, 26(3), 1837—1873 |
[33] | Li W. J., Jiang M. F., Liu M. J., Ling X., Xia Y. Q., Wan L., Chen F. E., Chem. Eur. J., 2022, 28(33), e202200700 |
[1] | FAN Ye, HAN Huihui, FANG Yun, FENG Ruiqin, XIA Yongmei. Facile Synthesis of Hollow Nickel Submicrospheres with Hierarchical Nano-structure and Its Catalytic Hydrogenation of Phenol [J]. Chem. J. Chinese Universities, 2021, 42(6): 1801. |
[2] | ZHANG Qian, DING Mingyue, ZHANG Yulan, LI Yuping, WANG Chenguang, WANG Tiejun, MA Longlong. Oligomerization of Biomass Cracking Gas to Gasoline Distillates over Amorphous Silica-alumina† [J]. Chem. J. Chinese Universities, 2016, 37(11): 2060. |
[3] | YANG Xu, DUAN Aijun, ZHAO Zhen, JIANG Guiyuan, LIU Jian, WEI Yuechang, LI Jianmei. Synthesis of L/W Composite Zeolite and Its Application in FCC Gasoline Hydro-upgrading Catalyst† [J]. Chem. J. Chinese Universities, 2015, 36(2): 336. |
[4] | ZHOU Ya-Fen, CHEN Jun-Ru, LI Rui-Xiang, ZHAO Song-Lin, LI Xian-Jun . Selective Hydrogenation of Halonitroaromatic Compounds Catalyzed by Water-soluble Bimetallic Catalyst Containing Ruthenium and Platinum [J]. Chem. J. Chinese Universities, 2004, 25(5): 884. |
[5] | FANG Ya-Yin, SHEN Rong-Xin, SUN Hong-Wei, YUAN Man-Xue, LIU Jie, LI Zheng-Ming, LAI Cheng-Ming. Theoretical Study on the Reaction Selectivity of the Catalytic Hydrogenation of 3-Analinomethylidene-5,6-2H-dihydropyran-2,4-diones [J]. Chem. J. Chinese Universities, 2002, 23(6): 1056. |
[6] | FANG Ya-Yin, SHEN Rong-Xin, SUN Hong-Wei, YUAN Man-Xue, LIU Jie-LI Zheng-Ming, LAI Cheng-Ming . AM1 Study on the Mechanism of Catalytic Hydrogenation of 3-Anilinomethy lidene-6-alkyl-5,6-2H-dihydropyran-2,4-diones [J]. Chem. J. Chinese Universities, 2001, 22(9): 1506. |
[7] | ZHOU Zhi-Ming, CHEN Nan . Novel Synthesis of Diethyl(1-naphthylmethyl)-tetrahydrofurfurylmalonate [J]. Chem. J. Chinese Universities, 1998, 19(12): 1979. |
[8] | FAN Yin-Heng, LIAO Shi-Jian, XU Jun, QIAN Yan-Long, HUANG Ji-Ling. Highly Active Hydrogenation Catalysts from Titanocenes and Sodium Hydride of Nanometric Size [J]. Chem. J. Chinese Universities, 1997, 18(10): 1683. |
[9] | GAO Jing-Xing, WANG Jin-Zhi, HU Sheng-Zhi, WAN Hui-Lin. Synthesis, Structure and Catalytic Hydrogenation of DinuclearPalladium(Ⅱ) Complex [Ph2P(o-C6H4CO)PdCl]2·2CH2Cl2 [J]. Chem. J. Chinese Universities, 1995, 16(5): 666. |
[10] | HE Zheng-Jie, CHEN Shou-Shan . Catalytic Hydrogenation of 6,6-Diphenylfulvene in the Presence of Cp2TiCl2-i-PrMgBr [J]. Chem. J. Chinese Universities, 1994, 15(5): 703. |
[11] | SHI Xian-Fa, JIANG Zhong-Liang, XLA Qing . Preparation of 4-Methylcyclohexanone by Catalytic Hydrogenation of p-Cresol at Normal Pressure [J]. Chem. J. Chinese Universities, 1993, 14(3): 415. |
[12] | Xu Zhiluo, Zhang Jingwen, Jiang Yulin, Huang Huamin . Studies on Selective Catalytic Hydrogenation of Crotonaldehyde [J]. Chem. J. Chinese Universities, 1990, 11(8): 848. |
[13] | Yang Shiyong, Sun Juntan, Li Hong, He Binglin . Preparation and Its Catalytic Hydrogenation Behaviour of Silica Gel-Supported Polyvinylpyridine-Palladium Catalysts [J]. Chem. J. Chinese Universities, 1990, 11(6): 638. |
[14] | Han Shuyun,Wu Zhiyun, Kan Qiubin, Zhou Caiju, Yang Jun. Studies on the Exchange and Catalytic Activity of Magnesium Aluminophosphate Molecular Sieve [J]. Chem. J. Chinese Universities, 1990, 11(1): 41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||