Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (4): 20210807.doi: 10.7503/cjcu20210807
• Physical Chemistry • Previous Articles Next Articles
Received:
2021-11-29
Online:
2022-04-10
Published:
2022-02-17
Contact:
GUO Jinchang
E-mail:guojc@sxu.edu.cn
Supported by:
CLC Number:
TrendMD:
GUO Jinchang, LIU Fanglin. Planar Pentacoordinate Silicon and Germanium in XBe5H6(X=Si, Ge) Clusters[J]. Chem. J. Chinese Universities, 2022, 43(4): 20210807.
System | Interaction | ΔEint/ (kJ·mol-1) | ΔEPauli/ (kJ·mol-1) | ΔEelstata / (kJ·mol-1) | ΔEorba / (kJ·mol-1) | ΔEorb(1)b / (kJ·mol-1) | ΔEorb(2)b / (kJ·mol-1) | ΔEorb(3)b / (kJ·mol-1) | ΔEorb(4)b / (kJ·mol-1) | ΔEorb(rest)b / (kJ·mol-1) |
---|---|---|---|---|---|---|---|---|---|---|
SiBe5H6 | — | -1438.1 | 719.91 | -1137.3 | -1020.7 | -14.4 | ||||
(52.7%) | (47.3%) | (1.4%) | ||||||||
X?Be5H6 electron? | -173.3 | |||||||||
sharing π bond | (17.0%) | |||||||||
X?Be5H6 electron? | -288.0 | -268.1 | -276.9 | |||||||
sharing σ bond | (28.2%) | (26.3%) | (27.1%) | |||||||
GeBe5H6 | — | -1503.4 | 873.2 | -1293.2 | -1083.4 | -20.3 | ||||
(54.4%) | (45.6%) | (2.0%) | ||||||||
X?Be5H6 electron? | -174.6 | |||||||||
sharing π bond | (16.1%) | |||||||||
X?Be5H6 electron? | -298.2 | -268.1 | -322.2 | |||||||
sharing σ bond | (27.5%) | (24.7%) | (29.7%) |
Table 1 EDA-NOCV results of XBe5H6(X=Si, Ge) cluster at the PBE0/TZ2P//PBE0/aug-cc-pVTZ level, using X(3s13px13py13pz1) and Be5H6(Quintet) as interacting fragments
System | Interaction | ΔEint/ (kJ·mol-1) | ΔEPauli/ (kJ·mol-1) | ΔEelstata / (kJ·mol-1) | ΔEorba / (kJ·mol-1) | ΔEorb(1)b / (kJ·mol-1) | ΔEorb(2)b / (kJ·mol-1) | ΔEorb(3)b / (kJ·mol-1) | ΔEorb(4)b / (kJ·mol-1) | ΔEorb(rest)b / (kJ·mol-1) |
---|---|---|---|---|---|---|---|---|---|---|
SiBe5H6 | — | -1438.1 | 719.91 | -1137.3 | -1020.7 | -14.4 | ||||
(52.7%) | (47.3%) | (1.4%) | ||||||||
X?Be5H6 electron? | -173.3 | |||||||||
sharing π bond | (17.0%) | |||||||||
X?Be5H6 electron? | -288.0 | -268.1 | -276.9 | |||||||
sharing σ bond | (28.2%) | (26.3%) | (27.1%) | |||||||
GeBe5H6 | — | -1503.4 | 873.2 | -1293.2 | -1083.4 | -20.3 | ||||
(54.4%) | (45.6%) | (2.0%) | ||||||||
X?Be5H6 electron? | -174.6 | |||||||||
sharing π bond | (16.1%) | |||||||||
X?Be5H6 electron? | -298.2 | -268.1 | -322.2 | |||||||
sharing σ bond | (27.5%) | (24.7%) | (29.7%) |
1 | Hoffmann R., Alder R. W., Wilcox C. F., J. Am. Chem. Soc., 1970, 92(16), 4992—4993 |
2 | Collins J. B., Dill J. D., Jemmis E. D., Apeloig Y., Schleyer P. V. R., Seeger R., Pople J. A., J. Am. Chem. Soc., 1976, 98(18), 5419—5427 |
3 | Schleyer P. V. R., Boldyrev A. I., J. Chem. Soc. Chem. Commun., 1991, 1991(21), 1536—1538 |
4 | Siebert W., Gunale A., Chem. Soc. Rev., 1999, 28(6), 367—371 |
5 | Minkin V. I., Minyaev R. M., Hoffmann R., Russ. Chem. Rev., 2002, 71(11), 869—892 |
6 | Keese R., Chem. Rev., 2006, 106(12), 4787—4808 |
7 | Merino G., Mendez⁃Rojas M. A., Vela A., Heine T., J. Comput. Chem., 2007, 28(1), 362—372 |
8 | Yang L. M., Ganz E., Chen Z., Wang Z. X., Schleyer P. V. R., Angew. Chem. Int. Ed., 2015, 54(33), 9468—9501 |
9 | Vassilev⁃Galindo V., Pan S., Donald K. J., Merino G., Nat. Rev. Chem., 2018, 2, 0114 |
10 | Li X., Wang L. S., Boldyrev A. I., Simons J., J. Am. Chem. Soc., 1999, 121(25), 6033—6038 |
11 | Wang L. S., Boldyrev A. I., Li X., Simons J., J. Am. Chem. Soc., 2000, 122(32), 7681—7687 |
12 | Li X., Zhang H. F., Wang L. S., Geske G. D., Boldyrev A. I., Angew. Chem. Int. Ed., 2000, 39(20), 3630—3632 |
13 | Xu J., Zhang X. X., Yu S., Ding Y. H., Bowen K. H., J. Phys. Chem. Lett., 2017, 8(10), 2263—2267 |
14 | Zhang X. X., Wang Y. Q., Geng Y., Zhang M., Su Z. M., Chem. J. Chinese Universities, 2018, 39(11), 2485—2491 |
张醒醒, 王艺桥, 耿允, 张珉, 苏忠民. 高等学校化学学报, 2018, 39(11), 2485—2491 | |
15 | Wang Z. X., Schleyer P. V. R., Science, 2001, 292(5526), 2465—2469 |
16 | Pei Y., An W., Ito K., Schleyer P. V. R., Zeng X. C., J. Am. Chem. Soc., 2008, 130(31), 10394—10400 |
17 | Guo J. C., Feng L. Y., Barroso J., Merino G., Zhai H. J., Chem. Commun., 2020, 56(59), 8305—8308 |
18 | Guo J. C., Tian W. J., Wang Y J., Zhao X. F., Wu Y. B., Zhai H. J., Li S. D., J. Chem. Phys., 2016, 144(24), 244303 |
19 | Exner K., Schleyer P. V. R., Science, 2000, 290(5498), 1937—1940 |
20 | Wu Y. B., Duan Y., Lu G., Lu H. G., Yang P., Schleyer P. V. R., Merino G., Islasef R., Wang Z. X., Phys. Chem. Chem. Phys., 2012, 14(43), 14760—14763 |
21 | Leyva⁃Parra L., Diego L., Yañez O., Inostroza D., Barroso J., Vasquez⁃Espinal A., Merino G., Tiznado W., Angew. Chem. Int. Ed., 2021, 60(16), 8700—8704 |
22 | Li S. D., Ren G. M., Miao C. Q., Li D. D., Chem. J. Chinese Universities, 2007, 28(1), 129—131 |
李思殿, 任光明, 苗常青, 李栋东. 高等学校化学学报, 2007, 28(1), 129—131 | |
23 | Boldyrev A. I., Li X., Wang L. S., Angew. Chem. Int. Ed., 2000, 39(18), 3307—3310 |
24 | Li S. D., Miao C. Q., Guo J. C., Ren G. M., J. Am. Chem. Soc., 2004, 126(49), 16227—16231 |
25 | Li S. D., Miao C. Q., J. Phys. Chem. A, 2005, 109(33), 7594—7597 |
26 | Islas R., Heine T., Ito K., Schleyer P. V. R., Merino G., J. Am. Chem. Soc., 2007, 129(47), 14767—14774 |
27 | Liu F. L., Jalbout A. F., J. Mol. Graphics Modell., 2008, 26, 1327—1332 |
28 | Alexandrova A. N., Nayhouse M. J., Huynh M. T., Kuo J. L., Melkonian A. V., Chavez G., Hernando N. M., Kowal M. D., Li C. P., Phys. Chem. Chem. Phys., 2012, 14(43), 14815—14821 |
29 | Guo J. C., Miao C. Q., Ren G. M., Comput. Theor. Chem., 2014, 1032, 7—11 |
30 | Guo J. C., Wu H. X., Ren G. M., Miao C. Q., Li Y. X., Comput. Theor. Chem., 2016, 1083, 1—6 |
31 | Sui J. J., Xu J., Ding Y. H., Dalton Trans., 2016, 45(1), 56—60 |
32 | Xu J., Ding Y. H., J. Comput. Chem., 2015, 36(6), 355—360 |
33 | Wang M. H., Dong X., Cui Z. H., Orozco⁃Ic M., Ding Y. H., Barroso J., Merino G., Chem. Commun., 2020, 56(89), 13772—13775 |
34 | Guo J. C., Ren G. M., Miao C. Q., Tian W. J., Wu Y. B., Wang X., J. Phys. Chem. A, 2015, 119(52), 13101—13106 |
35 | Guo J. C., Feng L. Y., Dong C., Zhai H. J., Phys. Chem. Chem. Phys., 2019, 21(39), 22048—22056 |
36 | Sergeeva A. P., Averkiev B. B., Zhai H. J., Boldyrev A. I., Wang L. S., J. Chem. Phys., 2011, 134(22), 224304 |
37 | Saunders M., J. Comput. Chem., 2004, 25(5), 621—626 |
38 | Bera P. P., Sattelmeyer K. W., Saunders M., Schaefer III H. F., Schleyer P. V. R., J. Phys. Chem. A, 2006, 110(13), 4287—4290 |
39 | Adamo C., Barone V., J. Chem. Phys., 1999, 110(13), 6158—6170 |
40 | Kendall R. A., Dunning T. H., Harrison R.J., J. Chem. Phys., 1992, 96(9), 6796—6806 |
41 | Pople J. A., Head⁃Gordon M., Raghavachari K., J. Chem. Phys., 1987, 87(10), 5968—5975 |
42 | Scuseria G. E., Schaefer III H. F., J. Chem. Phys., 1989, 90(7), 3700—3703 |
43 | Becke A. D., J. Chem. Phys., 1993, 98, 5648—5659 |
44 | Lee, C., Yang, W., Parr R. G., Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785—791 |
45 | Millam J. M., Bakken V., Chen W., Hase W. L., Schlegel H. B., J. Chem. Phys., 1999, 111, 3800—3805 |
46 | Reed A. E., Curtiss L. A., Weinhold F. A., Chem. Rev., 1988, 88(6), 899—926 |
47 | Zubarev D. Y., Boldyrev A. I., Phys. Chem. Chem. Phys., 2008, 10(34), 5207—5217 |
48 | Lu T., Chen F., J. Comput. Chem., 2012, 33(5), 580—592 |
49 | Baerends E. J., Ziegler T., Autschbach J., Bashford D., Bérces A., Bickelhaupt F. M., Bo C., Boerrigter P. M., Cavallo L., Chong D. P., Deng L., Dickson R. M., Ellis D. E., Van Faassen M., Fan L., Fischer T. H., Fonseca Guerra C., Franchini M., Ghysels A., Giammona A., Van Gisbergen S. J. A., GÖtz A.W., Groeneveld J. A., Gritsenko O. V., Grüning M., Gusarov S., Harris F. E., Van den Hoek P., Jacob C.R., Jacobsen H., Jensen L., Kaminski J. W., Van Kessel G., Kootstra F., Kovalenko A., Krykunov M. V., Van Lenthe E., McCormack D. A., Michalak A., Mitoraj M., Morton S. M., Neugebauer J., Nicu V. P., Noodleman L., Osinga V. P., Patchkovskii S., Pavanello M., Philipsen P. H. T., Post D., Pye C. C., Ravenek W., Rodríguez J. I., Ros P., Schipper P. R. T., Van Schoot H., Schreckenbach G., Seldenthuis J. S., Seth M., Snijders J. G., Solà M., Swart M., Swerhone D., Te Velde G., Vernooijs P., Versluis L., Visscher L., Visser O., Wang F., Wesolowski T. A., Van Wezenbeek E. M., Wiesenekker G., Wolff S. K., Woo T. K., Yakovlev A. L., ADF2021, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, http://www.scm.com |
50 | Ziegler T., Rauk A., Theor. Chim. Acta, 1977, 46, 1—10 |
51 | Mitoraj M., Michalak A., Organometallics, 2007, 26, 6576—6580 |
52 | Schleyer P. V. R., Maerker C., Dransfeld A., Jiao H. J., Hommes N. J. R. V. E., J. Am. Chem. Soc., 1996, 118(26), 6317—6318 |
53 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta E. J., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2009 |
54 | Legault C. Y., CYLview, 1.0b, Universite´ de Sherbrooke, 2009, http://www.cylview.org |
55 | Varetto U., Molekel 5.4.0.8, Swiss National Supercomputing Center, Manno, 2009 |
56 | Pyykkö P., J. Phys. Chem. A, 2015, 119(11), 2326—2337 |
57 | Guo J. C., Feng L. Y., Zhai H. J., Phys. Chem. Chem. Phys., 2018, 20, 6299—6306 |
58 | Guo J. C., Feng L. Y., Dong C., Zhai H. J., J. Phys. Chem. A, 2018, 122(42), 8370—8376 |
59 | Boldyrev A. I., Simons J., J. Am. Chem. Soc., 1998, 120(31), 7967—7972 |
60 | Wang M.H., Chen C., Pan S., Cui Z. H., Chem. Sci., 2021, 12, 15067—15076 |
[1] | ZHANG Xingxing, WANG Yiqiao, GENG Yun, ZHANG Min, SU Zhongmin. Theoretical Studies on Enhancing the Stability of the Planar CAl4 by Al-S Bridge† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2485. |
[2] | LI Jun-Jie, CAO Pei-Jiang, ZHENG Wei-Tao, LU Xian-Yi, BIAN Hai-Jiao, JIN Zeng-Sun. Influence of Bombarding Ions Energy on the Content of sp3C-N Bonds in Carbon Nitride Films [J]. Chem. J. Chinese Universities, 2003, 24(5): 880. |
[3] | ZHANG Yong-Fan, LI Jun-Qian, DING Kai-Ning, CHEN Wen-Kai, ZHOU Li-Xin . A Density Functional Study on the Phase Stability and Phase Transitions at High Pressure for TiC Solid [J]. Chem. J. Chinese Universities, 2003, 24(5): 863. |
[4] | ZHAO Dong-Xia, GONG Li-Dong, YANG Zhong-Zhi . Theoretical Study on the Potential Felt by a Single Electron within a Molecule [J]. Chem. J. Chinese Universities, 2001, 22(11): 1893. |
[5] | LI Song, LI Qian-Shu, TANG Ao-Qing . Studies on the Localized Molecular Orbital Properties for Syn and Anti Isomers of Dinuclear Mo-S Clusters [J]. Chem. J. Chinese Universities, 1992, 13(8): 1113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||