Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (1): 20210476.doi: 10.7503/cjcu20210476
• Review • Previous Articles Next Articles
TAN Yuling, YANG Ling, YU Hong(), NI Chunyan, LANG Jianping(
)
Received:
2021-07-06
Online:
2022-01-10
Published:
2021-08-02
Contact:
LANG Jianping
E-mail:yuhong@suda.edu.cn;jplang@suda.edu.cn
Supported by:
CLC Number:
TrendMD:
TAN Yuling, YANG Ling, YU Hong, NI Chunyan, LANG Jianping. Progress of the Synthesis of High-Nuclearity Ag/S Nanoclusters[J]. Chem. J. Chinese Universities, 2022, 43(1): 20210476.
Fig.1 View of the structure of Ag70a(A), view of the hierarchical multi?shell silver nanocluster assembly found in Ag70a(B), view of the [(MoO4)@Ag4(MoO4)4] square array caged by a Ag66 shell(C)[33]Copyright 2019, Wiley?VCH.
Fig.2 Strategy to constructing abundant silver clusters[36](A) Single anion template; (B) homo anions template; (C) hetero anions template.Copyright 2020, Royal Society of Chemistry.
Fig.3 View of the structure of the [Br@Ag36(SC6H4tBu4)36]- cluster(A)[43], view of the cationic cluster structure of [SO4@Ag78S15(CpS)27(CF3CO2)12](CF3CO2)7(B), view of a simple sulphate anion templated 78?nucleus Ag cluster with a multishell structure(C)[44], solvent?driven reversible transformation between electrically neutral thiolate protected Ag25 and Ag26 clusters(D)[45](A) Copyright 2010, Wiley?VCH. (B, C) Copyright 2018, Royal Society of Chemistry. (D) Copyright 2021, Science China Press.
Fig.4 View of the structure of the [(Mo20O66)@Ag62(tBuS)40(Mo6O19)3(CH3CN)2]·(CF3SO3)4 cluster(A)[40], view of the crystal structure of [(V10O28)@Ag44] in [(V10O28)@Ag44(EtS)20(PhSO3)18(H2O)2]n(B), view of the crystal structure of a [(V10O28)@Ag46] in [(V10O28)@Ag46(EtS)23(PhSO3)15(CO3)]n(C), view of the crystal structure of a [(Mo6O19)@Ag44] in [Mo6O19@Ag44(EtS)24(SCl4)3]n(D)[46](A) Copyright 2015, Royal Society of Chemistry. (B―D) Copyright 2019, Royal Society of Chemistry.
Fig.5 View of the crystal structure of {[Mo4O14(SO4)]2@Ag73S4(PhSO3)17(iBuS)30(SO4)3·(H2O)4·2H2O}4(A), the silver shell of Ag73 comprised of two Ag26 caps fixed on a cyclic Ag21 motif up and down(B)[47], view of the structure of [(SO4)2(W5O19)2@Ag90(tBuC6H4S)44(PhCOO)24(DMF)2(H2O)2]·2PhCOO(C), perspective view of the Ag?S shell by removing all carbon atoms for clarity and all anion templates shown in space?filling mode(D)[48](A, B) Copyright 2018, Wiley?VCH. (C, D) Copyright 2018, Royal Society of Chemistry.
Fig.6 Scheme for the ligand?exchange conversion of the silver/sulfide nanocluster Ag35(SG)18 in the presence of different ligands(4?FTP, PET, CHT, BBS)[50]Copyright 2015, American Chemical Society.
1 | Pyykkö P., Chem. Rev., 1997, 97(3), 597—636 |
2 | Tao A., Sinsermsuksakul P., Yang P. D., Angew. Chem. In. Ed., 2006, 45(28), 4597—4601 |
3 | Jin R. C., Cao Y. W., Mirkin C. A., Kelly K. L., Schatz G. C., Zheng J. G., Science, 2001, 294(5548), 1901—1903 |
4 | Xie Y. P., Jin J. L., Duan G. X., Lu X., Mak T. C. W., Coord. Chem. Rev., 2017, 331, 54—72 |
5 | Jin R., Zeng C., Zhou M., Chen Y., Chem. Rev., 2016, 116(18), 10346—10413 |
6 | Fuhr O., Dehnen S., Fenske D., Chem. Soc. Rev., 2013, 42(4), 1871—1906 |
7 | Zhu M., Aikens C. M., Hollander F. J., Schatz George C., J. Am. Chem. Soc., 2008, 130(18), 5883—5885 |
8 | Tian S., Li Y. Z., Li M. B., Yuan J., Yang J., Wu Z., Jin R., Nat. Commun., 2015, 6, 8667 |
9 | Li G., Lei Z., Wang Q. M., J. Am. Chem. Soc., 2010, 132(50), 17678—17679 |
10 | Zhang L., Wang E., NanoToday, 2014, 9(1), 132—157 |
11 | Yan J., Teo B. K., Zheng N. F., Acc. Chem. Res., 2018, 51(12), 3084—3093 |
12 | Corrigan J. F., Fuhr O., Fenske D., Adv. Mater., 2009, 21, 1867—1871 |
13 | Jansen M., Angew. Chem. Int. Ed., 1987, 26(11), 1098—1110 |
14 | Sculforta S., Braunstein P., Chem. Soc. Rev., 2011, 40(5), 2741—2760 |
15 | Fenske D., Anson C. E., Eichhofer A., Fuhr O., lngendoh A., Persau C., Richert C., Angew. Chem. Int. Ed., 2005, 44(33), 5242—5246 |
16 | Wang Z., Su H. F., Kurmoo M., Tung C. H., Sun D., Zheng L. S., Nat. Commun., 2018, 9, 2094 |
17 | Zhou K., Qin C., Li H. B., Yan L. K., Wang X. L., Shan G. G., Su Z. M., Xu C., Wang X. L., Chem. Commun., 2012, 48(47), 5844—5846 |
18 | Wang Z., Su H. F., Wang X. P., Zhao Q. Q., Tung C. H., Sun D., Zheng L. S., Chemistry, 2018, 24(7), 1640—1650 |
19 | Zhou K., Wang X. L., Qin C., Wang H. N., Yang G. S., Jiao Y. Q., Huang P., Shao K. Z., Su Z. M., Dalton. Trans., 2013, 42(5), 1352—1355 |
20 | Tian F., Chen R., J. Am. Chem. Soc., 2019, 141(17), 7107—7114 |
21 | Bao S. J., Liu C. Y., Zhang M., Chen X. R., Yu H., Li H. X., Braunstein P., Lang J. P., Coord. Chem. Rev., 2019, 397, 28—53 |
22 | Alhilaly M. J., Bootharaju M. S., Joshi C. P., Besong T. M., Emwas A. H., Juarez⁃Mosqueda R., Kaappa S., Malola S., Adil K., Shkurenko A., Häkkinen H., Eddaoudi M., Bakr O. M., J. Am. Chem. Soc., 2016, 138(44), 14727—14732 |
23 | Joshi C. P., Bootharaju M. S., Alhilaly M. J., Bakr O. M., J. Am. Chem. Soc., 2015, 137(36), 11578—11581 |
24 | Yang H. Y., Wang Y., Huang H. Q., Gell L., Lehtovaara L., Malola S., Häkkinen H., Zheng N. F., Nat. Commun., 2013, 4, 2422 |
25 | Chen Y., Zeng C., Kauffman D. R., Jin R., Nano Lett., 2015, 15(5), 3603—3609 |
26 | Muhammed M. A. H., Aldeek F., Palui G., Trapiella⁃Alfonso L., Mattoussi H., ACS Nano, 2012, 6(10), 8950—8961 |
27 | Adhikari B., Banerjee A., Chem. Mater., 2010, 22(15), 4364—4371 |
28 | Wu Z., Lanni E., Chen W., Bier M. E., Ly D., Jin R., J. Am. Chem. Soc., 2009, 131(46), 16672—16674 |
29 | Chakraborty I., Udayabhaskararao T., Pradeep T., Chem. Commun., 2012, 48(54), 6788—6790 |
30 | Wang Z., Gupta R. K., Luo G. G., Sun D., Chem. Rec., 2019, 19(1), 1—15 |
31 | Yu Y., Luo Z., Yu Y., Lee J. Y., Xie J., ACS Nano, 2012, 6(9),7920—7927 |
32 | Zheng K., Yuan X., Kuah K., Luo Z., Yao Q., Zhang Q., Xie J., Chem. Commun., 2015, 51(82), 15165—15168 |
33 | Liu J. W., Wang Z., Chai Y. M., Kurmoo M., Zhao Q, Q., Wang X. Po., Tung C. H., Sun D., Angew. Chem. Int. Ed., 2019, 58(19), 6276—6279 |
34 | Wang Q. M., Lin Y. M., Liu K. G., Acc. Chem. Res., 2015, 48(6), 1570—1579 |
35 | Wang Z., Gupta R. K., Luo G. G., Sun D., Chem. Rec., 2020, 20(5), 389—402 |
36 | Pan Z. H., Deng C. L., Wang Z., Lin J. Q., Luo G. G., Sun D., CrystEngComm., 2020, 22(22), 3736 |
37 | Yuan S., Deng Y. K., Wang X. P., Sun D., A New J. Chem., 2013, 37(10), 2973—2977 |
38 | Hau S. C. K., Cheng P. S., Mak T. C. W., Organometallics, 2014, 33(13), 3231—3234 |
39 | Hau S. C. K., Cheng P. S., Mak T. C. W., J. Am. Chem. Soc., 2012, 134(6), 2922—2925 |
40 | Huang R. W., Xu Q. Q., Lu H. L., Guo X. K., Zang S. Q., Gao G. G., Tang M. S., Mak T. C. W. Nanoscale, 2015, 7(16), 7151—7154 |
41 | Jiang Z. G., Shi K., Lin Y. M., Wang Q. M., Chem. Commun., 2014, 50(18), 2353—2355 |
42 | Rais D., Yau J., Mingos D. M. P., Vilar R., White A. J. P., Williams D. J., Angew. Chem. Int. Ed., 2001, 40(18), 3464—3467 |
43 | Liu X. M., Yang H. Y., Zheng N. F, Zheng L. S., Eur. J. Inorg. Chem., 2010, 2084—2087 |
44 | Cheng L. P., Wang Z., Wu Q. Y., Su H. F., Peng T., Luo G. G., Li Y. A., Sun D., Zheng L. S., Chem. Commun., 2018, 54(19), 2361—2364 |
45 | Tan Y. L., Yang L., Yu T. C., Yu H., Wang X. Y., Song Y. L., Niu Z., Lang J. P., Sci. China. Chem., 2021, 64, 948—952 |
46 | Wang Z., Sun Y. M., Qu Q. P., Liang Y. X., Wang X. P., Liu Q. Y., Kurmoo M., Su H. F., Tung C. H., Sun D., Nanoscale, 2019, 11(22), 10927—10931 |
47 | Wang Z., Su H. F., Wang X. P., Zhao Q. Q., Tung C. H., Sun D., Zheng L. S., Chem. Eur. J., 2018, 24(7), 1640—1650 |
48 | Liu J. W., Su H. F., Wang Z., Li Y. A., Zhao Q. Q., Wang X. P., Tung C. H., Sun D., Zheng L. S., Chem. Commun., 2018, 54(35), 4461—4464 |
49 | AbdulHalim L. G., Kothalawala N., Sinatra L., Dass A., Bakr O. M., J. Am. Chem. Soc., 2014, 136(45), 15865—15868 |
50 | Bootharaju M. S., Burlakov V. M., Besong T. M. D., Joshi C. P., AbdulHalim L. G., Black D.M., Whetten R. L., Goriely A., Bakr O. M., Chem. Mater., 2015, 27(12), 4289—4297 |
51 | Bootharaju M. S., Joshi C. P., Alhilaly M. J., Bakr O. M., Chem. Mater., 2016, 28(10), 3292—3297 |
52 | Khatun E., Ghosh A., Ghosh D., Chakraborty P., Nag A., Mondal B., Chennu S., Pradeep T., Nanoscale, 2017, 9(24), 8240—8248 |
[1] | CAO Shujie, LI Hongjun, GUAN Wenli, REN Mengtian, ZHOU Chuanzheng. Progress on the Stereocontrolled Synthesis of Phosphorothioate Oligonucleotides [J]. Chem. J. Chinese Universities, 2022, 43(Album-4): 20220304. |
[2] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[3] | JIANG Bowen, CHEN Jingxuan, CHENG Yonghua, SANG Wei, KOU Zongkui. Recent Progress of Single-atom Materials in Electrochemical Biosensing [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220334. |
[4] | WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428. |
[5] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[6] | JIN Ruiming, MU Xiaoqing, XU Yan. Bio-chemical Synthesis of Melanin Precursor—— 5,6-Dihydroxyindole(DHI) [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220134. |
[7] | WU Yushuai, SHANG Yingxu, JIANG Qiao, DING Baoquan. Research Progress of Controllable Self-assembled DNA Origami Structure as Drug Carrier [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220179. |
[8] | LI Lin, QI Fenglian, QIU Lili, MENG Zihui. Dynamic Amorphous Photonic Structure Patterns Assembled by Hexagonal Magnetic Nanosheets [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220123. |
[9] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[10] | WEI Chunhong, JIANG Qian, WANG Panpan, JIANG Chengfa, LIU Yuefeng. Atomic Scale Investigation of Pt Atoms/clusters Promoted Co-catalyzed Fischer-Tropsch Synthesis [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220074. |
[11] | ZHANG Xinxin, XU Di, WANG Yanqiu, HONG Xinlin, LIU Guoliang, YANG Hengquan. Effect of Mn Promoter on CuFe-based Catalysts for CO2 Hydrogenation to Higher Alcohols [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220187. |
[12] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[13] | YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220198. |
[14] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[15] | SHI Naike, ZHANG Ya, SANSON Andrea, WANG Lei, CHEN Jun. Uniaxial Negative Thermal Expansion and Mechanism in Zn(NCN) [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||