Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (6): 1648.doi: 10.7503/cjcu20200863
• Review • Previous Articles Next Articles
YUE Shengli1,2, WU Guangbao3, LI Xing3, LI Kang2, HUANG Gaosheng2, TANG Yi1(), ZHOU Huiqiong2(
)
Received:
2020-12-14
Online:
2021-06-10
Published:
2021-06-08
Contact:
ZHOU Huiqiong
E-mail:tangyii@163.com;zhouhq@nanoctr.cn
CLC Number:
TrendMD:
YUE Shengli, WU Guangbao, LI Xing, LI Kang, HUANG Gaosheng, TANG Yi, ZHOU Huiqiong. Research Progress of Quasi-two-dimensional Perovskite Solar Cells[J]. Chem. J. Chinese Universities, 2021, 42(6): 1648.
Species | DJ | ACI | RP | AVI |
---|---|---|---|---|
Formula | A′An-1BnX3n+1 | (A′A)n-1BnX3n+1 | (A′A) n+1BnX3n+1 | Bi2O2An-1BnX3n+1 |
Stacking sequence | [(A′)(An-1BX)n] | [(A′X)(ABX)n] | [(A′X)(ABX)n] | [(Bi2O2)(An-1BX)n] |
A relative shift of the layers along the ab?plane | (0, 0) shift | (1/2, 0) shift | (1/2, 1/2) shift | (1/2, 1/2) shift |
n=3 exemplar | 3AMP(MA)2Pb3I11 | GA2MA3Pb3I11 | BA2(MA)2Pb3I11 | (Bi2O2)(Sr)Ta2O7 |
Species | DJ | ACI | RP | AVI |
---|---|---|---|---|
Formula | A′An-1BnX3n+1 | (A′A)n-1BnX3n+1 | (A′A) n+1BnX3n+1 | Bi2O2An-1BnX3n+1 |
Stacking sequence | [(A′)(An-1BX)n] | [(A′X)(ABX)n] | [(A′X)(ABX)n] | [(Bi2O2)(An-1BX)n] |
A relative shift of the layers along the ab?plane | (0, 0) shift | (1/2, 0) shift | (1/2, 1/2) shift | (1/2, 1/2) shift |
n=3 exemplar | 3AMP(MA)2Pb3I11 | GA2MA3Pb3I11 | BA2(MA)2Pb3I11 | (Bi2O2)(Sr)Ta2O7 |
Perovskite film | Eg/meV | |||
---|---|---|---|---|
n=1 | n=2 | n=3 | n=4 | |
BA2(MA)n-1(Pb)n(I)3n+1 | 2.35 | 2.12 | 2.01 | 1.90 |
3AMP(MA)n-1(Pb)n(I)3n+1 | 2.22 | 2.00 | 1.90 | 1.84 |
GA(MA)n-1(Pb)n(I)3n+1 | 2.27 | 1.99 | 1.73 | — |
MAPbI3 | 1.60(n=∞) |
Perovskite film | Eg/meV | |||
---|---|---|---|---|
n=1 | n=2 | n=3 | n=4 | |
BA2(MA)n-1(Pb)n(I)3n+1 | 2.35 | 2.12 | 2.01 | 1.90 |
3AMP(MA)n-1(Pb)n(I)3n+1 | 2.22 | 2.00 | 1.90 | 1.84 |
GA(MA)n-1(Pb)n(I)3n+1 | 2.27 | 1.99 | 1.73 | — |
MAPbI3 | 1.60(n=∞) |
A′ site | Structure | Device configuration | PCE(%) | Stability | Ref. |
---|---|---|---|---|---|
iso?BA | (iso?BA)2MA3Pb4I13 (n=4) | FTO/C60/2D PER/ Spiro?OMeTAD/Au | 10.6 | ― | [ |
AA | AA2MA3Pb4I13 (n=4) | ITO/PTAA/2D PER/C60/ BCP/Ag | 18.4 | 99% of PCE after 1850 h (N2 gloves) | [ |
F?PEA | (F?PEA)2MA4Pb5I16 (n=5) | FTO/c?TiO2/2D PER/ Spiro?OMeTAD/Au | 13.6 | 65% of PCE after 576 h (70 ℃, N2 gloves) | [ |
MTEA | (MTEA)2MA4Pb5I16 (n=5) | ITO/PEDOT∶PSS/2D PER/P CBM/BCP/Ag | 18.0 | 87.1% of PCE after 1000 h (N2 gloves, continuous light soaking) | [ |
THMA | THMA2MA2Pb3I10 (n=3) | ITO/PEDOT∶ PSS/2DPER/ PCBM/BCP/Ag | 15.4 | 90% of PCE after 1000 h (N2 gloves) | [ |
4AEP | (4AEP)2MA4Pb5I16 (n=5) | FTO/C60/2D PER/ Spiro?OMeTAD/Au | 11.6 | 95% of PCE after 1000 h (atmosphere, humidity 30%) | [ |
A′ site | Structure | Device configuration | PCE(%) | Stability | Ref. |
---|---|---|---|---|---|
iso?BA | (iso?BA)2MA3Pb4I13 (n=4) | FTO/C60/2D PER/ Spiro?OMeTAD/Au | 10.6 | ― | [ |
AA | AA2MA3Pb4I13 (n=4) | ITO/PTAA/2D PER/C60/ BCP/Ag | 18.4 | 99% of PCE after 1850 h (N2 gloves) | [ |
F?PEA | (F?PEA)2MA4Pb5I16 (n=5) | FTO/c?TiO2/2D PER/ Spiro?OMeTAD/Au | 13.6 | 65% of PCE after 576 h (70 ℃, N2 gloves) | [ |
MTEA | (MTEA)2MA4Pb5I16 (n=5) | ITO/PEDOT∶PSS/2D PER/P CBM/BCP/Ag | 18.0 | 87.1% of PCE after 1000 h (N2 gloves, continuous light soaking) | [ |
THMA | THMA2MA2Pb3I10 (n=3) | ITO/PEDOT∶ PSS/2DPER/ PCBM/BCP/Ag | 15.4 | 90% of PCE after 1000 h (N2 gloves) | [ |
4AEP | (4AEP)2MA4Pb5I16 (n=5) | FTO/C60/2D PER/ Spiro?OMeTAD/Au | 11.6 | 95% of PCE after 1000 h (atmosphere, humidity 30%) | [ |
A′ site | Structure | Device configuration | PCE(%) | Stability | Ref. |
---|---|---|---|---|---|
PDA | (PDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 14.1 | 28% of PCE after 20 d (atmosphere, humidity 45%) | [ |
BDA | (BDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 16.3 | 80% of PCE after 20 d (atmosphere, humidity 45%) | [ |
PEDA | (PeDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 12.9 | 100% of PCE after 20 d (atmosphere, humidity 45%) | [ |
HDA | (HDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 10.5 | 60% of PCE after 20 d (atmosphere, humidity 45%) | [ |
3AMP | (3AMP)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/ C60/BCP/Ag | 7.32 | ― | [ |
4AMP | (4AMP)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/C60/BCP/Ag | 4.24 | ― | [ |
3AMPY | (3AMPY)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/C60/BCP/Ag | 9.20 | ― | [ |
4AMPY | (4AMP)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/C60/BCP/Ag | 5.69 | ― | [ |
PDMA | (PDMA)A9Pb10(I0.93Br0.07)31 | FTO/c?TiO2/mp?TiO2/2D PER/Spiro?MeOTAD/Au | 15.6 | 80% of PCE after 84 d (atmosphere, humidity 20%―50%) | [ |
BDA | (BDA)MA4Pb5I16 | ITO/PEDOT∶PSS/2D PER/PC60BM/LiF/Al | 17.9 | 84% of PCE after 1182 h (atmosphere, humility 60%) | [ |
MAMP | (MAMP)MA3Pb4I13 | FTO/TiO2/2D PER/Spiro? MeOTAD/Au | 16.5 | 90% of PCE after 217 h (Continuous light soaking) | [ |
A′ site | Structure | Device configuration | PCE(%) | Stability | Ref. |
---|---|---|---|---|---|
PDA | (PDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 14.1 | 28% of PCE after 20 d (atmosphere, humidity 45%) | [ |
BDA | (BDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 16.3 | 80% of PCE after 20 d (atmosphere, humidity 45%) | [ |
PEDA | (PeDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 12.9 | 100% of PCE after 20 d (atmosphere, humidity 45%) | [ |
HDA | (HDA)MA4Pb5I16(n=5) | ITO/PEDOT∶PSS/2D PER/ PC60BM/LiF/Al | 10.5 | 60% of PCE after 20 d (atmosphere, humidity 45%) | [ |
3AMP | (3AMP)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/ C60/BCP/Ag | 7.32 | ― | [ |
4AMP | (4AMP)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/C60/BCP/Ag | 4.24 | ― | [ |
3AMPY | (3AMPY)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/C60/BCP/Ag | 9.20 | ― | [ |
4AMPY | (4AMP)MA3Pb4I13 | FTO/PEDOT∶PSS/2D PER/C60/BCP/Ag | 5.69 | ― | [ |
PDMA | (PDMA)A9Pb10(I0.93Br0.07)31 | FTO/c?TiO2/mp?TiO2/2D PER/Spiro?MeOTAD/Au | 15.6 | 80% of PCE after 84 d (atmosphere, humidity 20%―50%) | [ |
BDA | (BDA)MA4Pb5I16 | ITO/PEDOT∶PSS/2D PER/PC60BM/LiF/Al | 17.9 | 84% of PCE after 1182 h (atmosphere, humility 60%) | [ |
MAMP | (MAMP)MA3Pb4I13 | FTO/TiO2/2D PER/Spiro? MeOTAD/Au | 16.5 | 90% of PCE after 217 h (Continuous light soaking) | [ |
1 | Ruddlesden S. N., Popper P., Acta Crystallogr.,1957, 10, 538―540 |
2 | Maruyama S., Seno T., Tectonophysics.,1986, 127, 305―329 |
3 | Hirasawa M., Ishihara T., Goto T., Uchida K., Miura N., Physica B,1994, 201, 427―430 |
4 | Ishihara T., Takahashi J., Goto T., Solid State Commun.,1989, 69, 933―936 |
5 | Anderson M. T., Greenwood K. B., Taylor G. A., Poeppelmeier K. R., Progress in Solid State Chemistry,1993, 22, 197―233 |
6 | Mitzi D. B., Feild C. A., Harrison W. T. A., Guloy A. M., Nature,1994, 369, 467―469 |
7 | Mitzi D., Wang S., Feild C., Chess C., Guloy A., Science,1995, 267, 1473―1476 |
8 | Smith I. C., Hoke E. T., Solis⁃Ibarra D., McGehee M. D., Karunadasa H. I., Angew. Chem. Int. Ed.,2014, 53, 11232―11235 |
9 | Lin Y., Fang Y. J., Zhao J. J., Shao Y. C., Stuard S. J., Nahid M. M., Ade H., Wang Q., Shield J. E., Zhou N. H., Moran A. M., Huang J. S., Nat. Commun.,2019, 10, 11 |
10 | Wang G. W., Hou C. J., Long H. T., Yang L. J., Wang Y., Acta Physico⁃Chimica Sinica,2019, 35(12), 1319―1340(王根旺, 侯超剑, 龙昊天, 杨立军, 王扬. 物理化学学报, 2019, 35(12), 1319―1340) |
11 | Shannon R. D., Acta Crystallogr. Sect. A,1976, 32, 751―767 |
12 | Goldschmidt V. M., Naturwissenschaften,1926, 14, 477―485 |
13 | Saparov B., Mitzi D. B., Chem. Rev.,2016, 116, 4558―4596 |
14 | Kieslich G., Sun S. J., Cheetham A. K., Chem. Sci.,2014, 5, 4712―4715 |
15 | Mitzi D. B., J. Chem. Soc. Dalton Trans.,2001, 1―12 |
16 | Mao L., Stoumpos C. C., Kanatzidis M. G., J. Am. Chem. Soc.,2019, 141, 1171―1190 |
17 | Lai H., Lu D., Xu Z., Zheng N., Xie Z., Liu Y., Adv. Mater.,2020, 2001470 |
18 | Sun C., Wang M. S., Li P. X., Guo G. C., Angew. Chem. Int. Ed.,2017, 56, 554―558 |
19 | Mao L., Guo P., Kepenekian M., Hadar I., Katan C., Even J., Schaller R. D., Stoumpos C. C., Kanatzidis M. G., J. Am. Chem. Soc.,2018, 140, 13078―13088 |
20 | Kamminga M. E., de Wijs G. A., Havenith R. W. A., Blake G. R., Palstra T. T. M., Inorg. Chem.,2017, 56, 8408―8414 |
21 | Kamminga M. E., Fang H. H., Filip M. R., Giustino F., Baas J., Blake G. R., Loi M. A., Palstra T. T. M., Chem. Mater.,2016, 28, 4554―4562 |
22 | Vargas B., Ramos E., Perez⁃Gutierrez E., Alonso J. C., Solis⁃Ibarra D., J. Am. Chem. Soc.,2017, 139, 9116―9119 |
23 | Stoumpos C. C., Kanatzidis M. G., Acc. Chem. Res.,2015, 48, 2791―2802 |
24 | Ren H., Yu S., Chao L., Xia Y., Sun Y., Zuo S., Li F., Niu T., Yang Y., Ju H., Li B., Du H., Gao X., Zhang J., Wang J., Zhang L., Chen Y., Huang W., Nat. Photon.,2020, 14, 154―163 |
25 | Ortiz‐Cervantes C., Carmona‐Monroy P., Solis‐Ibarra D., ChemSusChem,2019, 12, 1560―1575 |
26 | Connor B. A., Leppert L., Smith M. D., Neaton J. B., Karunadasa H. I., J. Am. Chem. Soc.,2018, 140, 5235―5240 |
27 | Billing D. G., Lemmerer A., Acta Crystallogr.,2007, 63, 735―747 |
28 | Soe C. M. M., Stoumpos C. C., Kepenekian M., Traore B., Tsai H., Nie W., Wang B., Katan C., Seshadri R., Mohite A. D., Even J., Marks T. J., Kanatzidis M. G., J. Am. Chem. Soc.,2017, 139, 16297―16309 |
29 | Mao L., Ke W., Pedesseau L., Wu Y., Katan C., Even J., Wasielewski M. R., Stoumpos C. C., Kanatzidis M. G., J. Am. Chem. Soc.,2018, 140, 3775―3783 |
30 | Paritmongkol W., Dahod N. S., Stollmann A., Mao N., Settens C., Zheng S. L., Tisdale W. A., Chem. Mater.,2019, 31, 5592―5607 |
31 | Ruddlesden S. N., Popper P., Acta Crystallogr.,1958, 11, 54―55 |
32 | Cao D. H., Stoumpos C. C., Farha O. K., Hupp J. T., Kanatzidis M. G., J. Am. Chem. Soc.,2015, 137, 7843―7850 |
33 | Hervoches C. H., Lightfoot P., Chem. Mater.,1999, 11, 3359―3364 |
34 | Zhang Y. L., Wang P. J., Tang M. C., Barrit D., Ke W. J., Liu J. X., Luo T., Liu Y. C., Niu T. Q., Smilgies D. M., Yang Z., Liu Z. K., Jin S. Y., Kanatzidis M. G., Arnassian A., Liu S. Z. F., Zhao K., J. Am. Chem. Soc.,2019, 141, 2684―2694 |
35 | Szafranski M., Stahl K., Phys. Rev. B,2000, 62, 8787―8793 |
36 | Boopathi K. M., Karuppuswamy P., Singh A., Hanmandlu C., Lin L., Abbas S. A., Chang C. C., Wang P. C., Li G., Chu C. W., J. Mater. Chem. A,2017, 5, 20843―20850 |
37 | Correa⁃Baena J. P., Nienhaus L., Kurchin R. C., Shin S. S., Wieghold S., Putri Hartono N. T., Layurova M., Klein N. D., Poindexter J. R., Polizzotti A., Sun S., Bawendi M. G., Buonassisi T., Chem. Mater.,2018, 30, 3734―3742 |
38 | Jiang F., Yang D., Jiang Y., Liu T., Zhao X., Ming Y., Luo B., Qin F., Fan J., Han H., Zhang L., Zhou Y., J. Am. Chem. Soc.,2018, 140, 1019―1027 |
39 | Chatterjee S., Pal A. J., ACS Appl. Mater. Interfaces,2018, 10, 35194―35205 |
40 | Wang J., Luo S., Lin Y., Chen Y., Deng Y., Li Z., Meng K., Chen G., Huang T., Xiao S., Huang H., Zhou C., Ding L., He J., Huang J., Yuan Y., Nat. Commun.,2020, 11, 582 |
41 | Tsai H., Nie W., Blancon J. C., Stoumpos C. C., Asadpour R., Harutyunyan B., Neukirch A. J., Verduzco R., Crochet J. J., Tretiak S., Pedesseau L., Even J., Alam M. A., Gupta G., Lou J., Ajayan P. M., Bedzyk M. J., Kanatzidis M. G., Nature,2016, 536, 312―316 |
42 | Passarelli J. V., Fairfield D. J., Sather N. A., Hendricks M. P., Sai H., Stern C. L., Stupp S. I., J. Am. Chem. Soc.,2018, 140, 7313―7323 |
43 | Li Y., Milić J. V., Ummadisingu A., Seo J. Y., Im J. H., Kim H. S., Liu Y., Dar M. I., Zakeeruddin S. M., Wang P., Hagfeldt A., Grätzel M., Nano Lett.,2018, 19, 150―157 |
44 | Ahmad S., Fu P., Yu S., Yang Q., Liu X., Wang X., Wang X., Guo X., Li C., Joule,2019, 3, 794―806 |
45 | Stoumpos C. C., Cao D. H., Clark D. J., Young J., Rondinelli J. M., Jang J. I., Hupp J. T., Kanatzidis M. G., Chem. Mater.,2016, 28, 2852―2867 |
46 | Chen A. Z., Shiu M., Deng X., Mahmoud M., Zhang D., Foley B. J., Lee S. H., Giri G., Choi J. J., Chem. Mater.,2019, 31, 1336―1343 |
47 | Soe C. M. M., Nagabhushana G. P., Shivaramaiah R., Tsai H. H., Nie W. Y., Blancon J. C., Melkonyan F., Cao D. H., Traore B., Pedesseau L., Kepenekian M., Katan C., Even J., Marks T. J., Navrotsky A., Mohite A. D., Stoumpos C. C., Kanatzidis M. G., Proc. Natl. Acad. Sci. USA,2019, 116, 58―66 |
48 | Safdari M., Svensson P. H., Hoang M. T., Oh I., Kloo L., Gardner J. M., J. Mater. Chem. A,2016, 4, 15638―15646 |
49 | Safdari M., Phuyal D., Philippe B., Svensson P. H., Butorin S. M., Kvashnina K. O., Rensmo H., Kloo L., Gardner J. M., J. Mater. Chem. A,2017, 5, 11730―11738 |
50 | Liang C., Gu H., Xia Y., Wang Z., Liu X., Xia J., Zuo S., Hu Y., Gao X., Hui W., Chao L., Niu T., Fang M., Lu H., Dong H., Yu H., Chen S., Ran X., Song L., Li B., Zhang J., Peng Y., Shao G., Wang J., Chen Y., Xing G., Huang W., Nat. Energy,2020, 6, 38―45 |
51 | Zhang J., Qin J., Wang M., Bai Y., Zou H., Keum J. K., Tao R., Xu H., Yu H., Haacke S., Hu B., Joule,2019, 3, 3061―3071 |
52 | He T., Li S., Jiang Y., Qin C., Cui M., Qiao L., Xu H., Yang J., Long R., Wang H., Yuan M., Nat. Commun.,2020, 11, 1672 |
53 | Proppe A. H., Quintero⁃Bermudez R., Tan H., Voznyy O., Kelley S. O., Sargent E. H., J. Am. Chem. Soc.,2018, 140, 2890―2896 |
54 | Qing J., Liu X. K., Li M., Liu F., Yuan Z., Tiukalova E., Yan Z., Duchamp M., Chen S., Wang Y., Bai S., Liu J. M., Snaith H. J., Lee C. S., Sum T. C., Gao F., Adv. Energy Mater.,2018, 8, 1800185 |
55 | Liu J. X., Leng J., Wu K. F., Zhang J., Jin S. Y., J. Am. Chem. Soc.,2017, 139, 1432―1435 |
56 | Wu G., Li X., Zhou J., Zhang J., Zhang X., Leng X., Wang P., Chen M., Zhang D., Zhao K., Adv Mater.,2019, 31, 1903889 |
57 | Chen A. Z., Shiu M., Ma J. H., Alpert M. R., Zhang D., Foley B. J., Smilgies D. M., Lee S. H., Choi J. J., Nat. Commun.,2018, 9, 1336 |
58 | Zuo C., Scully A. D., Vak D., Tan W., Jiao X., McNeill C. R., Angmo D., Ding L., Gao M., Adv. Energy Mater.,2019, 9, 1803258 |
59 | Burschka J., Pellet N., Moon S. J., Humphry⁃Baker R., Gao P., Nazeeruddin M. K., Grätzel M., Nature,2013, 499, 316―319 |
60 | Liu M., Johnston M. B., Snaith H. J., Nature,2013, 501, 395―398 |
61 | Razza S., Di Giacomo F., Matteocci F., Cinà L., Palma A. L., Casaluci S., Cameron P., D'Epifanio A., Licoccia S., Reale A., Brown T. M., Di Carlo A., J. Power Sources,2015, 277, 286―291 |
62 | Sutherland B. R., Hoogland S., Adachi M. M., Kanjanaboos P., Wong C. T., McDowell J. J., Xu J., Voznyy O., Ning Z., Houtepen A. J., Sargent E. H., Adv Mater.,2015, 27, 53―58 |
63 | Im J. H., Jang I. H., Pellet N., Gratzel M., Park N. G., Nat. Nanotechnol.,2014, 9, 927―932 |
64 | Chen Q., Zhou H., Hong Z., Luo S., Duan H. S., Wang H. H., Liu Y., Li G., Yang Y., J. Am. Chem. Soc.,2014, 136, 622―625 |
65 | Leyden M. R., Ono L. K., Raga S. R., Kato Y., Wang S., Qi Y., J. Mater. Chem. A,2014, 2, 18742―18745 |
66 | Huang H., Shi J., Zhu L., Li D., Luo Y., Meng Q., Nano Energy,2016, 27, 352―358 |
67 | Chen L., Tang F., Wang Y., Gao S., Cao W., Cai J., Chen L., Nano Res.,2015, 8, 263―270 |
68 | Zhu X., Xu Z., Zuo S., Feng J., Wang Z., Zhang X., Zhao K., Zhang J., Liu H., Priya S., Liu S. F., Yang D., Energy Environ. Sci.,2018, 11, 3349―3357 |
69 | Koh T. M., Shanmugam V., Schlipf J., Oesinghaus L., Müller‐Buschbaum P., Ramakrishnan N., Swamy V., Mathews N., Boix P. P., Mhaisalkar S. G., Adv Mater.,2016, 28, 3653―3661 |
70 | Straus D. B., Kagan C. R., J. Phys. Chem. Lett.,2018, 9, 1434―1447 |
71 | Quan L. N., Yuan M., Comin R., Voznyy O., Beauregard E. M., Hoogland S., Buin A., Kirmani A. R., Zhao K., Amassian A., Kim D. H., Sargent E. H., J. Am. Chem. Soc.,2016, 138, 2649―2655 |
72 | Gebhardt J., Kim Y., Rappe A. M., J. Phys. Chem. C,2017, 121, 6569―6574 |
73 | Even J., Pedesseau L., Jancu J. M., Katan C., J. Phys. Chem. Lett.,2013, 4, 2999―3005 |
74 | Even J., Pedesseau L., Katan C., Kepenekian M., Lauret J. S., Sapori D., Deleporte E., J. Phys. Chem. C,2015, 119, 10161―10177 |
75 | Prince M. B., J. Appl. Phys.,1955, 26, 534―540 |
76 | Guillemoles J. F., Kirchartz T., Cahen D., Rau U., Nat. Photon.,2019, 13, 501―505 |
77 | Slavney A. H., Smaha R. W., Smith I. C., Jaffe A., Umeyama D., Karunadasa H. I., Inorg. Chem.,2017, 56, 46―55 |
78 | Herz L. M., Annu. Rev. Phys. Chem.,2016, 67, 65―89 |
79 | Even J., Pedesseau L., Katan C., ChemPhysChem,2014, 15, 3733―3741 |
80 | Tsai H. H., Asadpour R., Blancon J. C., Stoumpos C. C., Even J., Ajayan P. M., Kanatzidis M. G., Alam M. A., Mohite A. D., Nie W. Y., Nat. Commun.,2018, 9, 9 |
81 | Blancon J., Tsai H., Nie W., Stoumpos C. C., Pedesseau L., Katan C., Kepenekian M., Soe C. M. M., Appavoo K., Sfeir M. Y., Science,2017, 355, 1288―1292 |
82 | Blancon J. C., Stier A. V., Tsai H., Nie W., Stoumpos C. C., Traore B., Pedesseau L., Kepenekian M., Katsutani F., Noe G. T., Kono J., Tretiak S., Crooker S. A., Katan C., Kanatzidis M. G., Crochet J. J., Even J., Mohite A. D., Nat. Commun.,2018, 9, 2254 |
83 | Hong X., Ishihara T., Nurmikko A. V., Phys. Rev. B, 1992, 45, 6961―6964 |
84 | Muljarov E. A., Tikhodeev S. G., Gippius N. A., Ishihara T., Phys. Rev. B,1995, 51, 14370―14378 |
85 | Elleuch S., Dammak T., Abid Y., Mlayah A., Boughzala H., J. Lumin.,2010, 130, 531―535 |
86 | Christol P., Lefebvre P., Mathieu H., J. Appl. Phys.,1993, 74, 5626―5637 |
87 | Liu J., Leng J., Wu K., Zhang J., Jin S., J. Am. Chem. Soc.,2017, 139, 1432―1435 |
88 | Hussain I., Tran H. P., Jaksik J., Moore J., Islam N., Uddin M. J., Emergent Mater.,2018, 1, 133―154 |
89 | Chiba Y., Islam A., Watanabe Y., Komiya R., Koide N., Han L., Jpn. J. Appl. Phys.,2006, 45, L638―L640 |
90 | Kojima A., Teshima K., Shirai Y., Miyasaka T., J. Am. Chem. Soc.,2009, 131, 6050―6051 |
91 | Meng L., You J., Guo T. F., Yang Y., Acc. Chem. Res.,2016, 49, 155―165 |
92 | Chen W., Wu Y., Liu J., Qin C., Yang X., Islam A., Cheng Y. B., Han L., Energy Environ. Sci.,2015, 8, 629―640 |
93 | Wang K. C., Jeng J. Y., Shen P. S., Chang Y. C., Diau E. W., Tsai C. H., Chao T. Y., Hsu H. C., Lin P. Y., Chen P., Guo T. F., Wen T. C., Sci. Rep.,2014, 4, 4756 |
94 | Wu G., Zhou J., Zhang J., Meng R., Wang B., Xue B., Leng X., Zhang D., Zhang X., Bi S., Zhou Q., Wei Z., Zhou H., Zhang Y., Nano Energy,2019, 58, 706―714 |
95 | Huang P., Yuan L. G., Li Y. W., Zhou Y., Song B., Acta Phys. Chim. Sinica,2018, 34(11), 1264―1271(黄鹏,元利刚,李耀文, 周祎,宋波. 物理化学学报, 2018, 34(11), 1264―1271) |
96 | Wang B. X., Wu F., Bi S. Q., Zhou J. Y., Wang J. Q., Leng X. Y., Zhang D. Y., Meng R., Xue B. D., Zong C. Z., Zhu L. N., Zhang Y., Zhou H. Q., J. Mater. Chem. A,2019, 7, 23895―23903 |
97 | Wang M. H., Wan L., Gao X. Y., Yuan W. B., Fang J. F., Tao Y. T., Huang W., Acta Chimica Sinica,2019, 77(8), 741―750(王梦涵, 万里, 高旭宇, 袁文博, 方俊峰, 陶友田, 黄维. 化学学报, 2019, 77(8), 741―750) |
98 | Chen W., Wu Y. Z., Yue Y. F., Liu J., Zhang W. J., Yang X. D., Chen H., Bi E. B., Ashraful I., Gratzel M., Han L. Y., Science,2015, 350, 944―948 |
99 | Chen R., Wang W., Bu T. L., Ku Z. L., Zhong J., Peng Y., Xiao S. Q., You W., Huang F. Z., Cheng Y. B., Fu Z. Y., Acta Phys. Chim. Sinica,2019, 35(4), 401―407(陈瑞, 王维, 卜童乐, 库治良, 钟杰, 彭勇, 肖生强, 尤为, 黄福志, 程一兵, 傅正义. 物理化学学报, 2019, 35(4), 401―407) |
100 | Yang Y., Zhu C. T., Lin F. Y., Chen T., Pan D. Q., Guo X. Y., Acta Chimica Sinica,2019, 77(10), 964―976(杨英, 朱从潭, 林飞宇, 陈甜, 潘德群, 郭学益. 化学学报, 2019, 77(10), 964―976) |
101 | Li Y., Cheng H., Zhao K., Wang Z. S., ACS Appl. Mater. Interfaces,2019, 11, 37804―37811 |
102 | Chen Y., Sun Y., Peng J., Zhang W., Su X., Zheng K., Pullerits T., Liang Z., Adv. Energy Mater.,2017, 7, 1700162 |
103 | Lai H., Kan B., Liu T., Zheng N., Xie Z., Zhou T., Wan X., Zhang X., Liu Y., Chen Y., J. Am. Chem. Soc.,2018, 140, 11639―11646 |
104 | Zhang F., Kim D. H., Lu H., Park J. S., Larson B. W., Hu J., Gao L., Xiao C., Reid O. G., Chen X., Zhao Q., Ndione P. F., Berry J. J., You W., Walsh A., Beard M. C., Zhu K., J. Am. Chem. Soc.,2019, 141, 5972―5979 |
105 | Wu G., Yang T., Li X., Ahmad N., Zhang X., Yue S., Zhou J., Li Y., Wang H., Shi X., Liu S., Zhao K., Zhou H., Zhang Y., Matter.,2020, 4, 582―599 |
106 | Smith I. C., Hoke E. T., Solis⁃Ibarra D., McGehee M. D., Karunadasa H. I., Angew. Chem. Int. Ed.,2014, 53, 11232―11235 |
107 | He T., Li S., Jiang Y., Qin C., Cui M., Qiao L., Xu H., Yang J., Long R., Wang H., Yuan M., Nat. Commun.,2020, 11 |
108 | Gao L., Zhang F., Xiao C., Chen X., Larson B. W., Berry J. J., Zhu K., Adv. Funct. Mater.,2019, 29, 1901652 |
109 | Soe C. M. M., Nie W., Stoumpos C. C., Tsai H., Blancon J. C., Liu F., Even J., Marks T. J., Mohite A. D., Kanatzidis M. G., Adv. Energy Mater.,2018, 8, 1700979 |
110 | Lian X., Chen J., Zhang Y., Qin M., Andersen T. R., Ling J., Wu G., Lu X., Yang D., Chen H., J. Mater. Chem. A,2019, 7, 19423―19429 |
111 | Yan L., Hu J., Guo Z., Chen H., Toney M. F., Moran A. M., You W., ACS Appl. Mater. Interfaces, 2018, 10, 33187―33197 |
112 | Koh T. M., Shanmugam V., Schlipf J., Oesinghaus L., Müller‐Buschbaum P., Ramakrishnan N., Swamy V., Mathews N., Boix P. P., Mhaisalkar S. G., Adv Mater.,2016, 28, 3653―3661 |
113 | Shao S., Duim H., Wang Q., Xu B., Dong J., Adjokatse S., Blake G. R., Protesescu L., Portale G., Hou J., Saba M., Loi M. A., ACS Energy Lett.,2019, 5, 39―46 |
114 | Zhao X., Liu T., Kaplan A. B., Yao C., Loo Y. L., Nano Lett.,2020, 20, 8880―8889 |
115 | Nie W. Y., Tsai H. H., Asadpour R., Blancon J. C., Neukirch A. J., Gupta G., Crochet J. J., Chhowalla M., Tretiak S., Alam M. A., Wang H. L., Mohite A. D., Science,2015, 347, 522―525 |
116 | Zhou N., Huang B., Sun M., Zhang Y., Li L., Lun Y., Wang X., Hong J., Chen Q., Zhou H., Adv. Energy Mater.,2019, 10, 1901566 |
117 | Li X., Wu G., Zhou J., Zhang J., Zhang X., Wang B., Xia H., Zhou H., Zhang Y., Small,2020, 16, 1906997 |
118 | Long M., Zhang T., Chen D., Qin M., Chen Z., Gong L., Lu X., Xie F., Xie W., Chen J., Xu J., ACS Energy Lett.,2019, 4, 1025―1033 |
119 | Zhang X., Ren X., Liu B., Munir R., Zhu X., Yang D., Li J., Liu Y., Smilgies D. M., Li R., Yang Z., Niu T., Wang X., Amassian A., Zhao K., Liu S., Energy Environ. Sci.,2017, 10, 2095―2102 |
120 | Zhou N., Shen Y., Li L., Tan S., Liu N., Zheng G., Chen Q., Zhou H., J. Am. Chem. Soc.,2018, 140, 459―465 |
121 | Xu Q., Meng K., Liu Z., Wang X., Hu Y., Qiao Z., Li S., Cheng L., Chen G., Adv. Mater. Interfaces,2019, 6, 1901259 |
122 | Gao L., Zhang F., Chen X., Xiao C., Larson B. W., Dunfield S. P., Berry J. J., Zhu K., Angew. Chem. Int. Ed.,2019, 58, 11737―11741 |
123 | Zhang X., Wu G., Yang S., Fu W., Zhang Z., Chen C., Liu W., Yan J., Yang W., Chen H., Small,2017, 13, 1700611 |
124 | Fu W., Wang J., Zuo L., Gao K., Liu F., Ginger D. S., Jen A. K. Y., ACS Energy Lett.,2018, 3, 2086―2093 |
125 | Zhang X., Wu G., Fu W., Qin M., Yang W., Yan J., Zhang Z., Lu X., Chen H., Adv. Energy Mater.,2018, 8, 1702498 |
126 | Xie Y., Yu H., Duan J., Xu L., Hu B., ACS Appl. Mater. Interfaces,2020, 12, 11190―11196 |
127 | Zhang Y., Chen J., Lian X., Yang W., Li J., Tian S., Wu G., Chen H., Sci. China Chem.,2019, 62, 859―865 |
128 | Li X., Wu G., Wang M., Yu B., Zhou J., Wang B., Zhang X., Xia H., Yue S., Wang K., Zhang C., Zhang J., Zhou H., Zhang Y., Adv. Energy Mater., 2020, 10, 2001832 |
129 | Zheng Y. T., Niu T. T., Qiu J., Chao L. F., Li B. X., Yang Y. G., Li Q., Lin C. Q., Gao X. Y., Zhang C. F., Xia Y. D., Chen Y. H., Huang W., Solar RRL,2019, 3, 1900090 |
130 | Niu T., Ren H., Wu B., Xia Y., Xie X., Yang Y., Gao X., Chen Y., Huang W., J. Phys. Chem. Lett.,2019, 10, 2349―2356 |
131 | Ke W., Mao L., Stoumpos C. C., Hoffman J., Spanopoulos I., Mohite A. D., Kanatzidis M. G., Adv. Energy Mater.,2019, 9, 1803384 |
132 | Li X. T., Ke W. J., Traore B., Guo P. J., Hadar I., Kepenekian M., Even J., Katan C., Stoumpos C. C., Schaller R. D., Kanatzidis M. G., J. Am. Chem. Soc.,2019, 141, 12880―12890 |
133 | Cohen B. E., Li Y., Meng Q., Etgar L., Nano Lett.,2019, 19, 2588―2597 |
134 | Luo T., Zhang Y., Xu Z., Niu T., Wen J., Lu J., Jin S., Liu S. F., Zhao K., Adv Mater. 2019, 31, e1903848 |
135 | Li P., Liang C., Liu X. L., Li F., Zhang Y., Liu X. T., Gu H., Hu X., Xing G., Tao X., Song Y., Adv. Mater.,2019, 31, e1901966 |
136 | Cao D. H., Stoumpos C. C., Yokoyama T., Logsdon J. L., Song T. B., Farha O. K., Wasielewski M. R., Hupp J. T., Kanatzidis M. G., ACS Energy Lett.,2017, 2, 982―990 |
137 | Qiu J., Xia Y. D., Chen Y. H., Huang W., Adv. Sci.,2019, 6, 1800793 |
138 | Li F., Xie Y., Hu Y., Long M., Zhang Y., Xu J., Qin M., Lu X., Liu M., ACS Energy Lett.,2020, 5, 1422―1429 |
139 | Liao Y. Q., Liu H. F., Zhou W. J., Yang D. W., Shang Y. Q., Shi Z. F., Li B. H., Jiang X. Y., Zhang L. J., Quan L. N., Quintero⁃ Bermudez R., Sutherland B. R., Mi Q. X., Sargent E. H., Ning Z. L., J. Am. Chem. Soc.,2017, 139, 6693―6699 |
140 | Kim H., Lee Y. H., Lyu T., Yoo J. H., Park T., Oh J. H., J. Mater. Chem. A,2018, 6, 18173―18182 |
141 | Zimmermann I., Aghazada S., Nazeeruddin M. K., Angew. Chem. Int. Ed.,2019, 58, 1072―1076 |
142 | Xu H. Y., Jiang Y. Z., He T. W., Li S. S., Wang H. H., Chen Y., Yuan M. J., Chen J., Adv. Funct. Mater.,2019, 29, 1807696 |
143 | Chen M., Ju M. G., Hu M. Y., Dai Z. H., Hu Y., Rong Y. G., Han H. W., Zeng X. C., Zhou Y. Y., Padture N. P., ACS Energy Lett.,2019, 4, 276―277 |
144 | Mitzi D. B., Medeiros D. R., Malenfant P. R. L., Inorg. Chem.,2002, 41, 2134―2145 |
145 | Zhou Y., Wang F., Cao Y., Wang J. P., Fang H. H., Loi M. A., Zhao N., Wong C. P., Adv. Energy Mater.,2017, 7, 1701048 |
146 | Spanopoulos I., Hadar I., Ke W., Tu Q., Chen M., Tsai H., He Y., Shekhawat G., Dravid V. P., Wasielewski M. R., Mohite A. D., Stoumpos C. C., Kanatzidis M. G., J. Am. Chem. Soc.,2019, 141, 5518―5534 |
147 | Fajardy M., Chiquier S., Mac Dowell N., Energy Environ. Sci.,2018, 11, 3408―3430 |
148 | Zhu H., Zhang F., Xiao Y., Wang S., Li X., J. Mater. Chem. A,2018, 6, 4971―4980 |
149 | Zhang F., Wang S., Zhu H., Liu X., Liu H., Li X., Xiao Y., Zakeeruddin S. M., Grätzel M., ACS Energy Lett.,2018, 3, 1145―1152 |
150 | Zhang F., Wang Z., Zhu H., Pellet N., Luo J., Yi C., Liu X., Liu H., Wang S., Li X., Xiao Y., Zakeeruddin S. M., Bi D., Grätzel M., Nano Energy,2017, 41, 469―475 |
[1] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[2] | ZHENG Anni, JIN Lei, YANG Jiaqiang, WANG Zhaoyun, LI Weiqing, YANG Fangzu, ZHAN Dongping, TIAN Zhongqun. Effects of 5,5-Dimethylhydantoin on Electroless Copper Plating [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220191. |
[3] | LIU Qingqing, WANG Pu, WANG Yongshuai, ZHAO Man, DONG Huanli. Synthesis and Topochemical Polymerization Study of Naphthalene/perylene Imides Substituted Diacetylene Derivatives [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220091. |
[4] | SHI Naike, ZHANG Ya, SANSON Andrea, WANG Lei, CHEN Jun. Uniaxial Negative Thermal Expansion and Mechanism in Zn(NCN) [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220124. |
[5] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, JIANG Wei, HUANG Weiqiu, CHEN Ruoyu. Activation of Biochar from Cattail and the VOCs Adsorption Application [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210824. |
[6] | LI Weihui, LI Haobo, ZENG Cheng, LIANG Haoyue, CHEN Jiajun, LI Junyong, LI Huiqiao. Hot-pressed PVDF-based Difunctional Protective Layer for Lithium Metal Anodes [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210629. |
[7] | CHANG Sihui, CHEN Tao, ZHAO Liming, QIU Yongjun. Thermal Degradation Mechanism of Bio-based Polybutylactam Plasticized by Ionic Liquids [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220353. |
[8] | SU Yingli, REN Haisheng, LI Xiangyuan. Application of New Nonequilibrium Solvation Theory in Electronic Spectra of Organic Dyes [J]. Chem. J. Chinese Universities, 2021, 42(7): 2254. |
[9] | WANG Hongning, HUANG Li, SONG Fujiao, ZHU Ting, HUANG Weiqiu, ZHONG Jing, CHEN Ruoyu. Synthesis and VOCs Adsorption Properties of Hollow Carbon Nanospheres [J]. Chem. J. Chinese Universities, 2021, 42(6): 1704. |
[10] | WANG Kunhua, YAO Jisong, YANG Junnan, SONG Yonghui, LIU Yuying, YAO Hongbin. Synthesis and Device Optimization of Highly Efficient Metal Halide Perovskite Light-emitting Diodes [J]. Chem. J. Chinese Universities, 2021, 42(5): 1464. |
[11] | LIN Shenghuang, FU Nianqing, BAO Qiaoliang. Recent Advances in the Applications of Elemental Two-dimensional Materials and Their Derivatives Serving as Transport Layers in Solar Cells [J]. Chem. J. Chinese Universities, 2021, 42(2): 412. |
[12] | LIU Yao, DENG Zhengtao. Fast Synthesis of Highly Luminescent Two-dimensional Tin-halide Perovskites by Anti-solvent Method [J]. Chem. J. Chinese Universities, 2021, 42(12): 3774. |
[13] | ZHANG Jun, WANG Bin, PAN Li, MA Zhe, LI Yuesheng. Synthesis and Properties of Imidazolium-based Polyethylene Ionomer [J]. Chem. J. Chinese Universities, 2020, 41(9): 2070. |
[14] | WANG Tingting, LEI Yuhan, LIN Yujuan, HUANG Jialing, LIU Cuie, ZHENG Fengying, LI Shunxing. Preparation of Liposome-terminated CsPbX3(X=Cl,Br,I) Nanocrystals and Applications in Light-emitting Diode Devices [J]. Chem. J. Chinese Universities, 2020, 41(8): 1896. |
[15] | WU Chunxiao, AI Xin, CHEN Yingxin, CUI Zhiyuan, LI Feng. Effects of Introducing Halogen Atoms to Biphenylmethyl Radical on Photostability, Photophysical and Electroluminescent Properties [J]. Chem. J. Chinese Universities, 2020, 41(5): 972. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||