[1] |
Zhou C. W., Li Y., Burke U., Banyon C., Somers K. P., Ding S., Khan S., Hargis J. W., Sikes T., Mathieu O., Petersen E. L., Alabbad M., Farooq A., Pan Y. S., Zhang Y. J., Huang Z. H., Lopez J., Loparo Z., Vasu S. S., Curran H. J., Combust. Flame, 2018, 197, 423— 438
|
[2] |
Lu T. F., Law C. K., Prog. Energy Combust., 2009, 35( 2), 192— 215
|
[3] |
Wang H., Sheen D. A., Prog. Energ. Combust., 2015, 47, 1— 31
|
[4] |
Konnov A. A., Combust. Flame, 2015, 162, 3755— 3772
|
[5] |
Curran H. J., Proc. Combust. Inst., 2019, 37, 57— 81
|
[6] |
Tan N. X., Wang J. B., Hua X. X., Li Z. R., Li X. Y., Chem. J. Chinese Universities, 2011, 32 8), 1832— 1837
|
|
( 谈宁馨,王静波,华晓筱,李泽荣,李象远.高等学校化学学报, 2011, 32(8), 1832— 1837)
|
[7] |
Guo J. J., Tang S. Y., Li R., Tan N. X., Acta Phys. Chim. Sin., 2019, 35 2), 182— 192
|
|
( 郭俊江,唐石云,李瑞,谈宁馨.物理化学学报, 2019, 35(2), 182— 192)
|
[8] |
Zou J. B., Li W., Ye L. L., Zhang X. Y., Li Y. Y., Yang J. Z., Qi F., Chin. J. Chem. Phys., 2018, 31( 4), 537— 546
|
[9] |
Sun W. Y., Wang J. X., Huang C., Hansen N., Yang B., Combust. Flame, 2019, 205, 11— 21
|
[10] |
Weltin E., J. Chem. Educ., 1994, 71( 4), 295— 297
|
[11] |
Starik A. M., Titova N. S., Kinet. Catal., 2003, 44( 1), 28— 39
|
[12] |
Kéromnès A., Metcalfe W. K., Heufer K. A., Donohoe N., Das A. K., Sung C. J., Herzler J., Naumann C., Griebel P., Mathieu O., Krejci M. C., Petersen E. L., Pitz W. J., Curran H. J., Combust. Flame, 2013, 160, 995— 1011
|
[13] |
Konnov A. A., Combust. Flame, 2019, 203, 14— 22
|
[14] |
Olm C., Zsély I. G., Pálvölgyi R., Varga T., Nagy T., Curran H. J., Turányi T., Combust. Flame, 2014, 161, 2219— 2234
|
[15] |
Denbign K. G., Principles of Chemical Equilibrium: With Applications to Chemistry and Chemical Engineering(Fourth Edition), Cambridge University Press, Cambridge, 1981,169
|
[16] |
Mechanical and Aerospace Engineering( Combustion Research), San Diego Mechanism , University of California at San Diego, 2016,
|
[17] |
Wang H., You X.Q., Joshi A. V., Davis S. G., Laskin A., Egolfopoulos F., Law C. K ., USC Mech Version II, High-temperature Combustion Reaction Model of H2/CO/C1—C4 Compounds,
|
[18] |
Tsang W., Hampson R. F ., J. Phys. Chem. Ref. Data, 1986, 15( 3), 1087— 1279
|
[19] |
Baulch D. L., Bowman C. T., Cobos C. J., Cox R. A., Just T., Kerr J. A., Pilling M. J., Stocker D., Troe J., Tsang W., Walker R. W., Warnatz J ., J. Phys. Chem. Ref. Data, 2005, 34( 3), 757— 1397
|
[20] |
Yao X. X., Wang J. B., Yao Q., Li Y. Q., Li Z. R., Li X. Y., Combust. Flame, 2019, 204, 176— 188
|
[21] |
Manion J.A., Huie R. E., Levin R. D., Burgess D. R., Orkin V. L., Tsang W., McGivern W. S., Hudgens J. W., Knyazev V. D., Atkinson D. B., Chai E., Tereza A. M., Lin C. Y., Allison T. C., Mallard W. G., Westley F., Herron J. T., Hampson R. F., Frizzell D. H.,NIST Chemical Kinetics Database, National Institute of Standards and Technology, USA,
|
[22] |
Li X.Y ., Center for Combustion Kinetics, Sichuan University, CHN,
|
[23] |
Chemkin-Pro, Reacton Design , San Diego, 2010
|
[24] |
Li X. Y., Yao X. X., Shentu J. T., Sun X. H., Li J. Q., Liu M. X., Xu S. M., Chem. J. Chinese Universities, 2020, 41 3), 512— 520
|
|
( 李象远,姚晓霞,申屠江涛,孙晓慧,李娟琴,刘明夏,许诗敏.高等学校化学学报, 2020, 41(3), 512— 520)
|
[25] |
Pavlov V. A., Shatalov O. P., Kinet. Catal., 2011, 52( 2), 157— 165
|
[26] |
Burke M. P., Dryer F. L., Ju Y. G., Proc. Combust. Inst., 2011, 33, 905— 912
|
[27] |
Hong Z., Davidson D. F., Barbour E. A., Hanson R. K., Proc. Combust. Inst., 2011, 33, 309— 316
|
[28] |
Pang G. A., Davidson D. F., Hanson R. K., Proc. Combust. Inst., 2009, 32, 181— 188
|
[29] |
Le Cong T., Dagaut P., Energ. Fuel., 2009, 23, 725— 734
|
[30] |
Bradley D., Lawes M., Liu K., Verhelst S., Woolley R., Combust. Flame, 2007, 149, 162— 172
|
[31] |
Herzler J., Naumann C., Proc. Combust. Inst., 2009, 32, 213— 220
|
[32] |
Zhang Y. J., Huang Z. H., Wei L. J., Zhang J. X., Law C. K., Combust. Flame, 2012, 159, 918— 931
|
[33] |
Tse S. D., Zhu D. L., Law C. K., Proc. Combust. Inst., 2000, 28, 1793— 1800
|
[34] |
Kwon O. C., Faeth G. M., Combust. Flame, 2001, 124( 4), 590— 610
|