Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (9): 20250122.doi: 10.7503/cjcu20250122
• Review • Previous Articles Next Articles
					
													LAI Lina1,2, BAO Yunxin3, WANG Yiming4(
), FAN Jie3(
)
												  
						
						
						
					
				
Received:2025-04-23
															
							
															
							
															
							
																											Online:2025-09-10
																								
							
																	Published:2025-06-23
															
						Contact:
								WANG Yiming, FAN Jie   
																	E-mail:506275236@qq.com;jfan@zju.edu.cn
																					Supported by:CLC Number:
TrendMD:
LAI Lina, BAO Yunxin, WANG Yiming, FAN Jie. Analysis of High Value Methane Conversion Pathways in the Context of Carbon Neutrality[J]. Chem. J. Chinese Universities, 2025, 46(9): 20250122.
| System | Catalyst | Temperature/℃ | Reaction condition | CH4 | H2 | H2 | Ref. | 
|---|---|---|---|---|---|---|---|
| Conv.(%) | Sel.(%) | Yield/(mg·g | |||||
| ·Molten media catalyst | NiMo⁃Bi | 800 | 100%CH4 reactant gas=4 sccm | 78 | 100 | 0.25 | [ | 
| MnCl2⁃KCl | 1050 | 100%CH4 reactant gas=5 sccm | 50 | 100 | — | [ | |
| ·Solid catalyst | Ni⁃Pd/Al2O3 | 800 | CH4/N2=3/7 GHSV=24000 mL·g  | 90 | — | — | [ | 
| Ni⁃Fe/MgO | 700 | CH4/N2=3/2 GHSV=24000 mL·g  | 64 | — | 5.2 | [ | |
| Fe/CeO2 | 800 | 100%CH4 GHSV=12000 mL·g | 54 | — | 4.4 | [ | |
| Fe/Al2O3 | 700 | CH4/N2=3/7 GHSV=42000 mL·g  | 60 | — | 36 | [ | 
Table 1 Representative catalysts for methane to blue hydrogen
| System | Catalyst | Temperature/℃ | Reaction condition | CH4 | H2 | H2 | Ref. | 
|---|---|---|---|---|---|---|---|
| Conv.(%) | Sel.(%) | Yield/(mg·g | |||||
| ·Molten media catalyst | NiMo⁃Bi | 800 | 100%CH4 reactant gas=4 sccm | 78 | 100 | 0.25 | [ | 
| MnCl2⁃KCl | 1050 | 100%CH4 reactant gas=5 sccm | 50 | 100 | — | [ | |
| ·Solid catalyst | Ni⁃Pd/Al2O3 | 800 | CH4/N2=3/7 GHSV=24000 mL·g  | 90 | — | — | [ | 
| Ni⁃Fe/MgO | 700 | CH4/N2=3/2 GHSV=24000 mL·g  | 64 | — | 5.2 | [ | |
| Fe/CeO2 | 800 | 100%CH4 GHSV=12000 mL·g | 54 | — | 4.4 | [ | |
| Fe/Al2O3 | 700 | CH4/N2=3/7 GHSV=42000 mL·g  | 60 | — | 36 | [ | 
| Catalyst | Reaction condition | Temperature/℃ | CH4 | C2 | C2 | Ref. | 
|---|---|---|---|---|---|---|
| Conv.(%) | Sel.(%) | Yield(%) | ||||
| 3.6Li/MgO | CH4/O2=2/1, GHSV=11250 mL·g | 700 | 38 | 55 | 20.9 | [ | 
| La2Ce2O7 | CH4/O2=4/1, GHSV=18000 mL·g | 550 | 30 | 50 | 15.0 | [ | 
| Mn⁃Na2WO4/SiO2 | CH4/O2=4.5/1, GHSV=12000 mL·g | 800 | 35 | 80 | 28.0 | [ | 
| MnO x ⁃Na2WO4/A⁃SiO2 | CH4/O2=5/1, GHSV=10000 mL·g | 680 | 23 | 72 | 16.6 | [ | 
| Sm2O3 | CH4/O2=3/1, GHSV=72000 mL·g | 500 | 28 | 42 | 11.8 | [ | 
| Sr⁃La2O3 | CH4/O2=3/1, GHSV=72000 mL·g | 650 | 37 | 54 | 20.0 | [ | 
| Mn⁃Na2WO4/LaCeZr | CH4/O2=3/1, GHSV=4000 mL·g | 700 | 37 | 55 | 20.8 | [ | 
| MnTiO3⁃Na2WO4/SiO2 | CH4/O2/N2=5/1/4, GHSV=8000 mL·g | 700 | 20 | 70 | 14.0 | [ | 
| La2O3⁃NaWSi | CH4/O2=3/1, GHSV=20000 mL·g | 570 | 31 | 34 | 10.6 | [ | 
| Mn/Na2WO4/LaCeZr⁃NaWZr/SiC | CH4/O2=1/1, GHSV=4000 mL·g | 700 | 70 | 50 | 35.0 | [ | 
| Fe©SiO2 | CH4/N2=9/1, GHSV=21400 mL·g | 1090 | 48 | 48 | 23.3 | [ | 
Table 2 Representative catalysts for methane to olefins
| Catalyst | Reaction condition | Temperature/℃ | CH4 | C2 | C2 | Ref. | 
|---|---|---|---|---|---|---|
| Conv.(%) | Sel.(%) | Yield(%) | ||||
| 3.6Li/MgO | CH4/O2=2/1, GHSV=11250 mL·g | 700 | 38 | 55 | 20.9 | [ | 
| La2Ce2O7 | CH4/O2=4/1, GHSV=18000 mL·g | 550 | 30 | 50 | 15.0 | [ | 
| Mn⁃Na2WO4/SiO2 | CH4/O2=4.5/1, GHSV=12000 mL·g | 800 | 35 | 80 | 28.0 | [ | 
| MnO x ⁃Na2WO4/A⁃SiO2 | CH4/O2=5/1, GHSV=10000 mL·g | 680 | 23 | 72 | 16.6 | [ | 
| Sm2O3 | CH4/O2=3/1, GHSV=72000 mL·g | 500 | 28 | 42 | 11.8 | [ | 
| Sr⁃La2O3 | CH4/O2=3/1, GHSV=72000 mL·g | 650 | 37 | 54 | 20.0 | [ | 
| Mn⁃Na2WO4/LaCeZr | CH4/O2=3/1, GHSV=4000 mL·g | 700 | 37 | 55 | 20.8 | [ | 
| MnTiO3⁃Na2WO4/SiO2 | CH4/O2/N2=5/1/4, GHSV=8000 mL·g | 700 | 20 | 70 | 14.0 | [ | 
| La2O3⁃NaWSi | CH4/O2=3/1, GHSV=20000 mL·g | 570 | 31 | 34 | 10.6 | [ | 
| Mn/Na2WO4/LaCeZr⁃NaWZr/SiC | CH4/O2=1/1, GHSV=4000 mL·g | 700 | 70 | 50 | 35.0 | [ | 
| Fe©SiO2 | CH4/N2=9/1, GHSV=21400 mL·g | 1090 | 48 | 48 | 23.3 | [ | 
| [1] | Seneviratne S. I., Donat M. G., Pitman A. J., Knutti R., Wilby R. L., Nature, 2016, 529(7587), 477—483 | 
| [2] | Masson⁃Delmotte V., Zhai P., Pirani A., Connors S. L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M., Huang M., Leitzell K., Lonnoy E., Matthews J., Maycock T., Waterfield T., Yeleksi O., Yu R., Zhou B., The Intergovernmental Panel on Climate Change(IPCC), 2021: Summary for Policymakers, Cambridge University Press, 2021, 3—32 | 
| [3] | Climate Action Tracker, Glasgow’s 2030 Credibility Gap: Net Zero’s Lip vice to Climate Action, 2023 | 
| [4] | Nesterenko N., Medeiros⁃Costa I. C., Clatworthy E. B., Cruchade H., Konnov S. V., Dath J. P., Gilson J. P., Mintova S., Natl. Sci. Rev., 2023, 10(9), 50—65 | 
| [5] | He M. Y., Sun Y. H., Han B. X., Angew. Chem. Int. Ed., 2022, 61(15), e202112835 | 
| [6] | Aguilera R. F., Aguilera R., Miner. Econ., 2020, 33(1/2), 73—80 | 
| [7] | Horn R., Schloegl R., Catal. Lett., 2015, 145(1), 23—39 | 
| [8] | Ji M. D., Wang J. L., Int. J. Hydrogen Energy, 2021, 46(78), 38612—38635 | 
| [9] | Bengaard H. S., Norskov J. K., Sehested J., Clausen B. S., Nielsen L. P., Molenbroek A. M., Rostrup⁃Nielsen J. R., J. Catal., 2002, 209(2), 365—384 | 
| [10] | Roh H. S., Eum I. H., Jeong D. W., Renew. Energy, 2012, 42, 212—216 | 
| [11] | Balasubramanian B., Ortiz A. L., Kaytakoglu S., Harrison D. P., Chem. Eng. Sci., 1999, 54(15/16), 3543—3552 | 
| [12] | Wang H., Cui G. Q., Lu H., Li Z. Y., Wang L., Meng H., Li J., Yan H., Yang Y. S., Wei M., Nat. Commun., 2024, 15(1), 3765 | 
| [13] | Zhang X., Xu Y., Liu Y., Niu L., Diao Y., Gao Z., Chen B., Xie J., Bi M., Wang M., Xiao D., Ma D., Shi C., Chem, 2023, 9(1), 102—116 | 
| [14] | Zhang J., Yang T., Rao Q., Gai Z., Li P., Shen Y., Liu M., Pan Y., Jin H., Fuel, 2024, 366, 131344 | 
| [15] | Chen S., Zeng L., Tian H., Li X., Gong J., ACS Catal., 2017, 7(5), 3548—3559 | 
| [16] | Ingham A., Johnson Matthey Technol. Rev., 2017, 61(4), 297—307 | 
| [17] | Ayabe S., Omoto H., Utaka T., Kikuchi R., Sasaki K., Teraoka Y., Eguchi K., Appl. Catal. A: Gen., 2003, 241(1/2), 261—269 | 
| [18] | Cheng Z. X., Wu Q. L., Li J. L., Zhu Q. M., Catal. Today, 1996, 30(1—3), 147—155 | 
| [19] | Buelens L. C., Galvita V. V., Poelman H., Detavernier C., Marin G. B., Science, 2016, 354(6311), 449—452 | 
| [20] | Minutillo M., Perna A., Int. J. Hydrogen Energy, 2010, 35(13), 7012—7020 | 
| [21] | Ling Y., Wang H., Liu M., Wang B., Li S., Zhu X., Shi Y., Xia H., Guo K., Hao Y., Jin H., Energy Environ. Sci., 2022, 15(5), 1861—1871 | 
| [22] | Patlolla S. R., Katsu K., Sharafian A., Wei K. V., Herrera O. E., Mérida W., Renew. Sust. Energ. Rev., 2023, 181, 113323 | 
| [23] | Moghaddam A. L., Hejazi S., Fattahi M., Kibria M. G., Thomson M. J., Aleisa R., Khan M. A., Energy Environ. Sci., 2025, 18(6), 2747—2790 | 
| [24] | Shokrollahi M., Teymouri N., Ashrafi O., Navarri P., Khojasteh⁃Salkuyeh Y., Int. J. Hydrogen Energy, 2024, 66, 337—353 | 
| [25] | Chan Y., Chan Z. P., Lock S. S. M., Yiin C. L., Foong S. T., Wong M. K., Ishak M. A., Quek V. C., Ge S., Lam S. S. L., Chin. Chem. Lett., 2024, 35(8), 109329 | 
| [26] | Chen G., Tu X., Homm G., Weidenkaff A., Nat. Rev. Mater., 2022, 7(5), 333—334 | 
| [27] | Sánchez⁃Bastardo N., Schlögl R., Ruland H., Ind. Eng. Chem. Res., 2021, 60(32), 11855—11881 | 
| [28] | Scheiblehner D., Neuschitzer D., Wibner S., Sprung A., Antrekowitsch H., Int. J. Hydrogen Energy, 2023, 48(16), 6233—6243 | 
| [29] | Upham D. C., Agarwal V., Khechfe A., Snodgrass Z. R., Gordon M. J., Metiu H., McFarland E. W., Science, 2017, 358(6365), 917—920 | 
| [30] | Chen L. N., Song Z. G., Zhang S. C., Chang C. K., Chuang Y. C., Peng X. X., Dun C., Urban J. J., Guo J. H., Chen J. L., Prendergast D., Salmeron M., Somorjai G. A., Su J., Science, 2023, 381(6660), 857—861 | 
| [31] | Pangestu M. R. G., Malaibari Z., Muhammad A., Al⁃Rowaili F. N., Zahid U., Energ. Fuel, 2024, 38(15), 13514—13538 | 
| [32] | Ahn S. Y., Kim K. J., Kim B. J., Hong G. R., Jang W. J., Bae J. W., Park Y. K., Jeon B. H., Roh H. S., Renew. Sust. Energ. Rev., 2023, 186, 113635 | 
| [33] | Salkuyeh Y. K., Saville B. A., MacLean H. L., Int. J. Hydrogen Energy, 2017, 42(30), 18894—18909 | 
| [34] | Ghavam S., Vahdati M., Wilson I. A. G., Styring P., Front. Energy Res., 2021, 9, 580808 | 
| [35] | Luo Y., Shi Y. X., Li W. Y., Ni M., Cai N. S., Int. J. Hydrogen Energy, 2014, 39(20), 10359—10373 | 
| [36] | Sun J., Alam D., Daiyan R., Masood H., Zhang T. Q., Zhou R. W., Cullen P. J., Lovell E. C., Jalili A., Amal R., Energy Environ. Sci., 2021, 14(2), 865—872 | 
| [37] | Yang L. C., Ge X. M., Wan C. X., Yu F., Li Y. B., Renew. Sust. Energ. Rev., 2014, 40, 1133—1152 | 
| [38] | Bozzano G., Manenti F., Prog. Energy Combust. Sci., 2016, 56, 71—105 | 
| [39] | Olah G. A., Angew. Chem. Int. Ed., 2005, 44(18), 2636—2639 | 
| [40] | Filosa C., Gong X., Bavykina A., Chowdhury A. D., Gallo J. M. R., Gascon J., Acc. Chem. Res., 2023, 56(23), 3492—3503 | 
| [41] | Dummer N. F., Willock D. J., He Q., Howard M. J., Lewis R. J., Qi G. D., Taylor S. H., Xu J., Bethell D., Kiely C. J., Hutchings G. J., Chem. Rev., 2023, 123(9), 6359—6411 | 
| [42] | Zakaria Z., Kamarudin S. K., Renew. Sust. Energ. Rev., 2016, 65, 250—261 | 
| [43] | Ravi M., Ranocchiari M., van Bokhoven J. A., Angew. Chem. Int. Ed., 2017, 56(52), 16464—16483 | 
| [44] | Taylor S. H., Hargreaves J. S. J., Hutchings G. J., Joyner R. W., Lembacher C. W., Catal. Today, 1998, 42(3), 217—224 | 
| [45] | Otsuka K., Hatano M., J. Catal., 1987, 108(1), 252—255 | 
| [46] | Shan J. J., Li M. W., Allard L. F., Lee S. S., Maria F. S., Nature, 2017, 551(7682), 605—608 | 
| [47] | Agarwal N., Freakley S. J., McVicker R. U., Althahban S. M., Dimitratos N., He Q., Morgan D. J., Jenkins R. L., Willock D. J., Taylor S. H., Kiely C. J., Hutchings G. J., Science, 2017, 358(6360), 223—226 | 
| [48] | Sushkevich V. L., Palagin D., Ranocchiari M., van Bokhoven J. A., Science, 2017, 356(6337), 523—527 | 
| [49] | Jin Z., Wang L., Zuidema E., Mondal K., Zhang M., Zhang J., Wang C., Meng X., Yang H., Mesters C., Xiao F. S., Science, 2020, 367(6474), 193—197 | 
| [50] | Schwach P., Pan X. L., Bao X. H., Chem. Rev., 2017, 117(13), 8497—8520 | 
| [51] | Gambo Y., Jalil A. A., Triwahyono S., Abdulrasheed A. A., J. Ind. Eng. Chem., 2018, 59, 218—229 | 
| [52] | Keller G. E., Bhasin M. M., J. Catal., 1982, 73(1), 9—19 | 
| [53] | Kondratenko E. V., Schlueter M., Baerns M., Linke D., Holena M., Catal. Sci. Technol., 2015, 5(3), 1668—1677 | 
| [54] | Li S. B., Chin. J. Chem., 2001, 19(1), 16—21 | 
| [55] | Zavyalova U., Holena M., Schloegl R., Baerns M., ChemCatChem, 2011, 3(12), 1935—1947 | 
| [56] | Labinger J. A., Ott K. C., J. Phys. Chem., 1987, 91(11), 2682—2684 | 
| [57] | Tang P., Zhu Q., Wu Z., Ma D., Energy Environ. Sci., 2014, 7(8), 2580—2591 | 
| [58] | Ortiz⁃Bravo C. A., Chagas C. A., Toniolo F. S., J. Nat. Gas Sci. Eng., 2021, 96, 104254 | 
| [59] | Hu J. B., Zhao Y. L., Liu F. W., Chen X. T., Xiao L. P., Zou S. H., Fan J., Mater. Today Sustainability, 2025, 29, 101053 | 
| [60] | Wang J., Liu F., Wu J., Zou S., Fan J., Catal. Sci. Technol., 2023, 13(8), 2493—2499 | 
| [61] | Zou S., Wang J., Liu J., Zhou Q., Pan Y., Yuan W., Hu J., Wang Y., Yang J., Wang Y., Liu J., Ma L., Du Y., Yang B., Fan J., ChemRxiv, 2024, doi: 10.26434/chemrxiv⁃2024⁃rmvt4 | 
| [62] | Guo X., Fang G., Li G., Ma H., Fan H., Yu L., Ma C., Wu X., Deng D., Wei M., Tan D., Si R., Zhang S., Li J., Sun L., Tang Z., Pan X., Bao X., Science, 2014, 344(6184), 616—619 | 
| [63] | Hao J., Schwach P., Fang G., Guo X., Zhang H., Shen H., Huang X., Eggart D., Pan X., Bao X., ACS Catal., 2019, 9(10), 9045—9050 | 
| [64] | Postma R. S., Lefferts L., ChemCatChem, 2021, 13(4), 1157—1160 | 
| [65] | Li J., He Y., Tan L., Zhang P., Peng X., Oruganti A., Yang G., Abe H., Wang Y., Tsubaki N., Nat. Catal., 2018, 1(10), 787—793 | 
| [66] | Friedel R. A., Anderson R. B., J. Am. Chem. Soc., 1950, 72(3), 1212—1215 | 
| [67] | Zhou W., Cheng K., Kang J., Zhou C., Subramanian V., Zhang Q., Wang Y., Chem. Soc. Rev., 2019, 48(12), 3193—3228 | 
| [68] | Galvis H. M. T., de Jong K. P., ACS Catal., 2013, 3(9), 2130—2149 | 
| [69] | Chen X. Q., Deng D. H., Pan X. L., Hu Y. F., Bao X. H., Chem. Commun., 2015, 51(1), 217—220 | 
| [70] | Chang C. D., Silvestri A. J., J. Catal., 1977, 47(2), 249—259 | 
| [71] | Xu S., Zhi Y., Han J., Zhang W., Wu X., Sun T., Wei Y., Liu Z., Adv. Catal., 2017, 61, 37—122 | 
| [72] | Liu Z., Liang J., Curr. Opin. Solid State Mater. Sci., 1999, 4(1), 80—84 | 
| [73] | Zhu Z., Fan M., He M., An B., Chen Y., Xu S., Zhou T., Sheveleva A. M., Kippax⁃Jones M., Shan L., Cheng Y., Cavaye H., Armstrong J., Rudié S., Parker S. F.,Thornley W., Tillotson E., Lindley M., Tian S., Lee S., Fu S., Frogley M. D., Tuna F., Melnnes E., Haigh S., Yang S., Sci. Bull., 2025, 70(5), 694—703 | 
| [74] | Wang Y., Zou S., Nabera A., Chen X., Pan Y., Wei K., Bao Y., Hu J., Zhao Y., Liu C., Liu J., Wang Y., Ren Y., Gonzalo G., Javier P., Fan J., J. Am. Chem. Soc., 2025, 147(9), 7757—7764 | 
| [75] | Xie S., Lin S., Zhang Q., Tian Z., Wang Y., J. Energy Chem., 2018, 27(6), 1629—1636 | 
| [76] | Yentekakis I. V., Jiang Y., Makri M., Vayenas C. G., Stud. Surf. Sci. Catal., 1997, 107, 307—312 | 
| [77] | Liu K., Zhao J., Zhu D., Meng F., Kong F., Tang Y., Catal. Commun., 2017, 96, 23—27 | 
| [78] | Jiang W., Low J., Mao K., Duan D., Chen S., Liu W., Pao C. W., Ma J., Sang S., Shu C., Zhan X., Qi Z., Zhang H., Liu Z., Wu X., Long R., Song L., Xiong Y., J. Am. Chem. Soc., 2021, 143(1), 269—278 | 
| [79] | Kang D., Rahimi N., Gordon M. J., Metiu H., McFarland E. W., Appl. Catal. B, 2019, 254, 659—666 | 
| [80] | Bayat N., Rezaei M., Meshkani F., Int. J. Hydrogen Energy, 2016, 41(12), 5494—5503 | 
| [81] | Al⁃Fatesh A., Barama S., Ibrahim A., Barama A., Khan W., Fakeeha A., Chem. Eng. Commun., 2017, 204(7), 739—749 | 
| [82] | Pudukudy M., Yaakob Z., Jia Q., Takriff M. S., Appl. Surf. Sci., 2019, 467, 236—248 | 
| [83] | Wang I. W., Kutteri D. A., Gao B., Tian H., Hu J., Energ. Fuel., 2019, 33(1), 197—205 | 
| [84] | Pal R. S., Rana S., Sadhu S., Khan T. S., Poddar M. K., Singha R. K., Sarkar S., Sharma R., Bal R., Energy Adv., 2023, 2(1), 180—197 | 
| [85] | Zhang Y., Xu J., Xu X., Xi R., Liu Y., Fang X., Wang X., Catal. Today, 2020, 355, 518—528 | 
| [86] | Kiani D., Sourav S., Baltrusaitis J., Wachs I. E., ACS Catal., 2019, 9(7), 5912—5928 | 
| [87] | Si J., Zhao G., Sun W., Liu J., Guan C., Yang Y., Shi X. R., Lu Y., Angew. Chem. Int. Ed., 2022, 61(18), e202117201 | 
| [88] | Dedov A. G., Loktev A. S., Moiseev I. I., Aboukais A., Lamonier J. F., Filimonov I. N., Appl. Catal. A, 2003, 245(2), 209—220 | 
| [89] | Song J., Sun Y., Ba R., Huang S., Zhao Y., Zhang J., Sun Y., Zhu Y., Nanoscale, 2015, 7(6), 2260—2264 | 
| [90] | Wang P., Zhao G., Liu Y., Lu Y., Appl. Catal. A, 2017, 544, 77—83 | 
| [91] | Zou S., Li Z., Zhou Q., Pan Y., Yuan W., He L., Wang S., Wen W., Liu J., Wang Y., Chin. J. Catal., 2021, 42(7), 1117—1125 | 
| [92] | Silvestri A. J., Abstr. Pap. Am. Chem. Soc., 1981, 181(MAR), 41—INDE | 
| [93] | Liu S., He J., Lu D., Sun J., Chem. Eng. Res. Des., 2020, 154, 182—191 | 
| [94] | v.d. Burgt M. J., van Leeuwen C. J., del'Amico J. J., Sie S. T., Stud. Surf. Sci. Catal., 1988, 36, 473—482 | 
| [95] | Oxidative Coupling of Methane followed by Oligomerization to Liquids. https: //cordis.europa.eu/project/id/228953/reporting | 
| [96] | Wang L. S., Tao L. X., Xie M. S., Xu G. F., Huang J. S., Xu Y. D., Catal. Lett., 1993, 21(1/2), 35—41 | 
| [97] | Huang X., Jiao X., Wang X., Zhao N., J. Fuel Chem. Technol., 2022, 50(1), 44—53 | 
| [98] | Spivey J. J., Hutchings G., Chem. Soc. Rev., 2014, 43(3), 792—803 | 
| [99] | Ali S. S., Shoeb M. A., Ansari K. B., Mesfer M. K., Danish M., Ansari M. Y., Energ. Fuel, 2023, 37(22), 17113—17133 | 
| [100] | Xie J., Fu C., Quesne M. G., Guo J., Wang C., Xiong L., Windle C. D., Gadipelli S., Guo Z. X., Huang W., Nature, 2025, 639, 368—374 | 
| [1] | ZHANG Yidong, YUAN Jiaxiang, FANG Wei, LU Chenglong, CHEN Hui, HE Xuan, DU Xing, LI Weixin, WANG Daheng, ZHAO Lei. Preparation of Carbon Foam-loaded One-dimensional TiO2 for Photothermal Catalytic Evaporators and Its Performances of Evaporation and Degradation for Wastewater [J]. Chem. J. Chinese Universities, 2024, 45(10): 20240295. | 
| [2] | BIAN Xuanang, ZHOU Chao, ZHAO Yunxuan, ZHANG Tierui. Light-driven Ammonia Synthesis over Layered-double- hydroxide-derived Ru Catalyst [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230095. | 
| [3] | KONG Lingzhao,MIAO Gai,LUO Hu,SUN Yuhan. Advances in Hydrothermal Catalysis Conversion of Biomass into Oxygen-containing Chemicals † [J]. Chem. J. Chinese Universities, 2020, 41(1): 11. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||