Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (11): 2386.doi: 10.7503/cjcu20180283
• Analytical Chemistry • Previous Articles Next Articles
YANG Jia, ZHANG Yuyang, LIU Chen, LI Jiaxin, XIAO Zhongliang*(), LI Dan, ZHANG Ling, CAO Zhong*(
)
Received:
2018-04-11
Online:
2018-11-10
Published:
2018-10-16
Contact:
XIAO Zhongliang,CAO Zhong
E-mail:xiaozhongliang@163.com;zhongcao2004@163.com
Supported by:
CLC Number:
TrendMD:
YANG Jia, ZHANG Yuyang, LIU Chen, LI Jiaxin, XIAO Zhongliang, LI Dan, ZHANG Ling, CAO Zhong. L-Cystine Sensor Based on Modification of Extended Gate of FET with Polydithiodipropanesulfonic Acid Membrane†[J]. Chem. J. Chinese Universities, 2018, 39(11): 2386.
Fig.2 Schematic diagram of the potentiometric device1. Digital multimeter; 2. regulated power supply; 3. extended gate FET; 4. working electrode; 5. reference electrode; 6. thermostatic controller.
Fig.5 Impedance(A) and cyclic voltammetry(B) plots of the electrodes for bare GGE(a), GGE/SPS(b) and GGE/SPS/L-cystine(c) in the media solution containing 2.0 mmol/L K3[Fe(CN)6]/K4[Fe(CN)6] and 0.2 mol/L Na2SO4
Electrade | Eb/eV | ||||
---|---|---|---|---|---|
Au | S | O | N | C | |
GGE | 84.27 | | 531.78 | 401.74 | 284.80 |
GGE/SPS | 84.38 | 161.71 | 532.11 | 400.09 | 284.80 |
GGE/SPS/L-cystine | 84.20 | 161.71 | 531.65 | 400.07 | 284.80 |
Table 1 Binding energy(Eb) of different atoms
Electrade | Eb/eV | ||||
---|---|---|---|---|---|
Au | S | O | N | C | |
GGE | 84.27 | | 531.78 | 401.74 | 284.80 |
GGE/SPS | 84.38 | 161.71 | 532.11 | 400.09 | 284.80 |
GGE/SPS/L-cystine | 84.20 | 161.71 | 531.65 | 400.07 | 284.80 |
Electrode | Method | Linear range/ (μmol·L-1) | LOD/ (μmol·L-1) | Selectivity | Reference |
---|---|---|---|---|---|
Ni-CCE | Amperometry | 1.0—450 | 0.64 | | [18] |
rGO/β-CD/GCE | Amperometry | 1.0—100 | | | [19] |
GGE/SPS | Potentiometry | 5.0—1000 | 2.69 | Good | This work |
Table 2 Comparison of performance with different modified electrodes to L-cystine*
Electrode | Method | Linear range/ (μmol·L-1) | LOD/ (μmol·L-1) | Selectivity | Reference |
---|---|---|---|---|---|
Ni-CCE | Amperometry | 1.0—450 | 0.64 | | [18] |
rGO/β-CD/GCE | Amperometry | 1.0—100 | | | [19] |
GGE/SPS | Potentiometry | 5.0—1000 | 2.69 | Good | This work |
Fig.10 Dynamic response curve of the electrode to various concentration of L-cystine in PBS(pH=5.0) with the timeConcentration of L-cystine added: A. 0; B. 1.000×10-5 mol/L; C. 5.000×10-5 mol/L; D. 1.000×10-4 mol/L; E. 5.000×10-4 mol/L.
Fig.11 Effect of interfering substance on the GGE/SPS electrodea. L-Cystine; b. L-Gly+L-cystine; c. L-Asp+L-cystine;d. L-Val+L-cystine; e. L-Pro+L-cystine; f. L-Ala+L-cystine;g. L-Thr+L-cystine; h. L-Leu+L-cystine; i. L-Trp+L-cystine;j. L-His+L-cystine; k. L-Cys+L-cystine; l. L-Met+L-cystine.
Sample | Added/(μmol·L-1) | Measured/(μmol·L-1) | RSD(%) | Recovery(%) |
---|---|---|---|---|
1 | 4.00 | 4.31 | 3.68 | 107.80 |
2 | 6.00 | 6.21 | 2.27 | 103.50 |
3 | 8.00 | 8.60 | 1.73 | 107.50 |
4 | 10.00 | 9.12 | 1.63 | 91.20 |
5 | 12.00 | 11.89 | 1.40 | 99.08 |
6 | 14.00 | 14.90 | 1.21 | 106.40 |
Table 3 Application of GGE/SPS electrode to determination of L-cystine in pig serum samples(n=3)
Sample | Added/(μmol·L-1) | Measured/(μmol·L-1) | RSD(%) | Recovery(%) |
---|---|---|---|---|
1 | 4.00 | 4.31 | 3.68 | 107.80 |
2 | 6.00 | 6.21 | 2.27 | 103.50 |
3 | 8.00 | 8.60 | 1.73 | 107.50 |
4 | 10.00 | 9.12 | 1.63 | 91.20 |
5 | 12.00 | 11.89 | 1.40 | 99.08 |
6 | 14.00 | 14.90 | 1.21 | 106.40 |
[1] | Poppi D. A., Moore S. S., Glencross B. D., Aquaculture, 2017, 471, 213—222 |
[2] | Zee T., Bose N., Zee J., Jennifer N. B., Yang S., Parihar J., Yang M., Damodar S., Hall D., Monique N. O, Ramanathan A., Roy R. G., David W.K., Chi T., Tischfield J., Sahota A., Kahn A., Marshall L. S., Kapahi P., Nat. Med., 2017, 23(3), 288—290 |
[3] | Treggiari D., Zoccatelli G., Chignola R., Molesini B., Minuz P., Pandolfini T., Food Chem., 2017, 221, 1346—1353 |
[4] | Zong E. Y., Xiong X., Yang H. S., Li J. Z., Huang P. F., Yin Y. L., Life Sci. Res., 2016, 20(5), 466—470 |
(宗恩艳, 熊霞, 杨焕胜, 李建中, 黄鹏飞, 印遇龙. 生命科学研究, 2016, 20(5), 466—470) | |
[5] | Sercan P. C., Andrew J., Artaches A. K., Brett P., Arianne S., Harald R., Michelle C., Gary R. D., Andrew R. S., Microchem. J., 2015, 121, 141—149 |
[6] | Thera J. C., Kidd K. A., Dodge-Lynch M. E., Bertolo R. F., Anal. Biochem., 2017, 539, 158—161 |
[7] | Taniguchi M., Konya Y., Nakano Y., Fukusaki E., J. Biosci. Bioeng., 2017, 124(4), 414—418 |
[8] | Nakano Y., Konya Y., Taniguchi M., Fukusaki E., J. Biosci. Bioeng., 2017, 123(1), 134—138 |
[9] | Culea M., Scrob S., Suvar S., Podea P., Has L., Anal. Lett., 2015, 48(1), 37—46 |
[10] | Omar M. M. A., Elbashir A. A., Schmitz O. J., Food Chem., 2017, 214, 300—307 |
[11] | Nehmé R., Atieh C., Fayad S., Claude B., Chartier A., Tannoury M., Elleuch F., Abdelkafi S., Pichon C., Morin P., J. Sep. Sci., 2017, 40, 558—566 |
[12] | Turkia H., Sirén H., Penttilä M., Pitkänen J. P., Talanta, 2015, 131, 366—371 |
[13] | He J. L., Wu P., Zhu S. L., Li T., Li P. P., Xiang J. N., Cao Z., Talanta, 2015, 132, 809—813 |
[14] | Xiao H., He J. L., Xiao H., Yang C., Feng Z. M., Yin Y. L., Cao Z., Chinese J. Anal. Chem., 2017, 45(10), 1517—1522 |
(肖慧, 何婧琳, 肖昊, 杨婵, 冯泽猛, 印遇龙, 曹忠. 分析化学, 2017, 45(10), 1517—1522) | |
[15] | Xia S. J, Shao H., Chen G., Chinese J. Food Hygiene, 2008, 20(4), 304—308 |
(夏苏捷, 邵泓, 陈钢. 中国食品卫生杂志, 2008, 20(4), 304—308) | |
[16] | Zhang L., Lu B., Lu C., Lin J. M., J. Sep. Sci., 2014, 37(1/2), 30—36 |
[17] | Alwael H., Connolly D., Barron L., Paull B.,J. Chromatogr. A., 2010, 1217(24), 3863—3870 |
[18] | Salimi A., Roushani M., Electroanalysis, 2006, 18(21), 2129—2136 |
[19] | Zor E., Bingol H., Ramanaviciene A., Ramanavicience A., Eraoz M., Analyst, 2015, 140(1), 313—321 |
[20] | Wei Z., Yang Y., Xiao X., Zhang W., Wang J., Sens. Actuators B, 2018, 255, 895—906 |
[21] | Gutierrez F. A., Rubianes M. D., Rivas G. A., J. Electroanal. Chem., 2016, 765, 16—21 |
[22] | Garcia V. N., Saurina J., Hernandez C. S., Fresenius J. Anal. Chem., 2001, 371(7), 1001—1008 |
[23] | Stefan V., Staden R. I., Holo L., Sens. Actuators B, 2007, 120(2), 399—402 |
[24] | Shahrokhian S., Anal. Chem., 2001, 73(24), 5972—5978 |
[25] | Deore B., Chen Z., Nagaoka T., Anal. Chem., 2000, 72(17), 3989—3994 |
[26] | Tong S. L, Rechnitz G. A., Anal. Lett., 1976, 9(1), 1—11 |
[27] | Sugawara A., Matsui D., Yamada M., Asano Y., Lsobe K., J. Biosci. Bioeng., 2015, 119(3), 369—374 |
[28] | Chauhan N., Narang J., Pundir C. S., Asano Y., Lsobe K., Enzym. Microb. Tech., 2013, 52(4/5), 265—271 |
[29] | Yin L. T, Lin Y. T, Leu Y. C, Hu C. Y., Sens. Actuators B, 2010, 148(1), 207—213 |
[30] | Lue C. E, Wang I. S, Huang C. H, Shiao Y. T, Wang H. C, Yang C. M, Hsu S. H, Chang C. Y, Wang W., Lai C. S., Microelectron. Reliab., 2012, 52(8), 1651—1654 |
[31] | Das A., Ko D. H., Chen C. H., Chang L. B., Lai C. S., Chu F. C., Chow L., Lin R. M., Sens. Actuators B, 2014, 205, 199—205 |
[32] | Zhang W. M., Feng Y., Diao K. S., Sun L., Hong F., Su Z. X., Hu Y. P., Chem. J. Chinese Universities, 2013, 34(9), 2233—2238 |
(张卫民, 冯宇, 刁开盛, 孙丽, 洪芳, 苏智兴, 胡玉平. 高等学校化学学报, 2013, 34(9), 2233—2238) | |
[33] | Tarasov A., Gray D. W., Tsai M. Y., Shields N., Montrose A., Creedon N., Lovero P., Riondan A. O., Mooney M. H., Biosens. Bioelectron., 2016, 79, 669—678 |
[34] | Liu D. P., Chu Y. L., Wu X. H., Huang J., Sci. China Mater., 2017, 60(10), 977—984 |
[35] | Zang Y. P., Di C. A., Zhu D. B., Scientia Sinica Chemica, 2016, 46(10), 1023—1038 |
(臧亚萍, 狄重安, 朱道本. 中国科学: 化学, 2016, 46(10), 1023—1038) | |
[36] | Luo X. L., Xu J. J., Chen H. Y., Chinese J. Anal. Chem., 2004, 32(10), 1395—1400 |
(罗细亮, 徐静娟, 陈洪渊. 分析化学, 2004, 32(10), 1395—1400) | |
[37] | Cao Z., Xiao Z. L., Zhang L., Luo D. M., Kamahori M., Shimoda M., Mater. Sci. Eng. C, 2013, 33(3), 1481—1490 |
[38] | Iskierko Z., Sosnowska M., Sharma P. S., Benincori T., Souza F. D., Kaminska L., Fronc K., Npworyto K., Biosens. Bioelectron., 2015, 74, 526—533 |
[39] | Purwidyantri A., Lai H. C., Tsai S. H., Luo J. D., Chiou C. C., Tian Y. C., Cheng C. H., Lin Y. T., Lai C. S., Sens. Actuators B, 2015, 217, 92—99 |
[40] | Wustoni S., Hideshima S., Kuroiwa S., Nakanishi T., Mori Y., Osaka T., Sens. Actuators B, 2016, 230, 374—379 |
[41] | Nuzzo R. G., Allara D. L., J. Am. Chem. Soc., 1983, 105(13), 4481—4483 |
[42] | Nuzzo R. G., Zegarski B. R., Dubois L. H., J. Am. Chem. Soc., 1987, 109(3), 733—740 |
[43] | Biebuyck H. A., Whitesides G. M., Langmuir, 1993, 9, 1766—1770 |
[44] | Palmer D. W., Peters T. Jr., Clin. Chem., 1969, 15(9), 891—901 |
[1] | ZHANG Xin, ZHAO Fulai, WANG Yu, LIANG Xuejing, FENG Yiyu, FENG Wei. Preparation and Electrical Properties of Germanium Telluride Field Effect Transistor [J]. Chem. J. Chinese Universities, 2020, 41(9): 2032. |
[2] | ZHANG Wei-Min, FENG Yu, DIAO Kai-Sheng, SUN Li, HONG Fang, SU Zhi-Xing, HU Yu-Ping. Synthesis and Properties of Poly(indenofluorene-triphenylamine) for Organic Field Effect Transistors [J]. Chem. J. Chinese Universities, 2013, 34(9): 2233. |
[3] |
FU Qun, WU Ming-Hong*, JIAO Zheng, WANG De-Qing.
Rapid Glycosylated Functionalization of Single-walled Carbon Nanotubes for Lectin Recognition [J]. Chem. J. Chinese Universities, 2009, 30(3): 525. |
[4] | ZHAO Shan-Qi, ZHAO Chun, CAI Hong, XU Bao-Kun, PENG Zuo-Yan, ZHAO Mu-Yu . Preparation of LaFeO3 Nanocrystalline Thin Film and Application in the MOSFET Gas Sensor [J]. Chem. J. Chinese Universities, 1993, 14(10): 1437. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||