Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (8): 20250057.doi: 10.7503/cjcu20250057
• Organic Chemistry • Previous Articles Next Articles
Received:
2025-02-28
Online:
2025-08-10
Published:
2025-04-14
Contact:
LIU Shanshan
E-mail:liushanshan@sust.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Yaoyao, LIU Shanshan. Catalyst-modulated Selective Hydrogen Transfer Reactions of Polyols with 2-Nitroaromatics[J]. Chem. J. Chinese Universities, 2025, 46(8): 20250057.
Entry | Catalyst | Base | Additive | Temperature/℃ | Yield of compound 3(%) b | Yield of compound 4(%) b |
---|---|---|---|---|---|---|
1 | FeCl3 | NMM | S | 120 | 67 | — |
2 | DPPF | NMM | S | 120 | 65 | — |
3 | Fe(acac)3 | NMM | S | 120 | 55 | — |
4 | FeCl2 | NMM | S | 120 | 74 | — |
5 | B(C6F5)3 | NMM | S | 120 | n.d. | — |
6 | CoCl2.6H2O | NMM | S | 120 | n.d. | — |
7 | AgOTf | NMM | S | 120 | n.d. | — |
8 | FeCl2 | K2CO3 | S | 120 | 48 | — |
9 | FeCl2 | KO t Bu | S | 120 | 41 | — |
10 | FeCl2 | NMM | S | 100 | 56 | — |
11 | FeCl2 | NMM | S | 140 | 84 | — |
12 c | FeCl2 | NMM | S | 140 | 58 | — |
13 | Pd/C | Et3N | — | 140 | — | 61 |
14 | Pd/Al2O3 | Et3N | — | 140 | — | 35 |
15 | Ru/C | Et3N | — | 140 | — | 28 |
16 | Ru⁃Fe/γ⁃Al2O3 | Et3N | — | 140 | — | 82 |
17 | Ru⁃Fe/γ⁃Al2O3 | DABCO | — | 140 | — | 40 |
18 | Ru⁃Fe/γ⁃Al2O3 | NMM | — | 140 | — | 30 |
19 | Ru⁃Fe/γ⁃Al2O3 | KO t Bu | — | 140 | — | n.d. |
20 | Ru⁃Fe/γ⁃Al2O3 | Et3N | — | 140 | — | 77 |
21 | Ru⁃Fe/γ⁃Al2O3 | Et3N | — | 120 | — | 80 |
22 | Ru⁃Fe/γ⁃Al2O3 | Et3N | — | 100 | — | 52 |
23 c | Ru⁃Fe/γ⁃Al2O3 | Et3N | — | 140 | — | 40 |
Table 1 Optimization of reaction conditions a
Entry | Catalyst | Base | Additive | Temperature/℃ | Yield of compound 3(%) b | Yield of compound 4(%) b |
---|---|---|---|---|---|---|
1 | FeCl3 | NMM | S | 120 | 67 | — |
2 | DPPF | NMM | S | 120 | 65 | — |
3 | Fe(acac)3 | NMM | S | 120 | 55 | — |
4 | FeCl2 | NMM | S | 120 | 74 | — |
5 | B(C6F5)3 | NMM | S | 120 | n.d. | — |
6 | CoCl2.6H2O | NMM | S | 120 | n.d. | — |
7 | AgOTf | NMM | S | 120 | n.d. | — |
8 | FeCl2 | K2CO3 | S | 120 | 48 | — |
9 | FeCl2 | KO t Bu | S | 120 | 41 | — |
10 | FeCl2 | NMM | S | 100 | 56 | — |
11 | FeCl2 | NMM | S | 140 | 84 | — |
12 c | FeCl2 | NMM | S | 140 | 58 | — |
13 | Pd/C | Et3N | — | 140 | — | 61 |
14 | Pd/Al2O3 | Et3N | — | 140 | — | 35 |
15 | Ru/C | Et3N | — | 140 | — | 28 |
16 | Ru⁃Fe/γ⁃Al2O3 | Et3N | — | 140 | — | 82 |
17 | Ru⁃Fe/γ⁃Al2O3 | DABCO | — | 140 | — | 40 |
18 | Ru⁃Fe/γ⁃Al2O3 | NMM | — | 140 | — | 30 |
19 | Ru⁃Fe/γ⁃Al2O3 | KO t Bu | — | 140 | — | n.d. |
20 | Ru⁃Fe/γ⁃Al2O3 | Et3N | — | 140 | — | 77 |
21 | Ru⁃Fe/γ⁃Al2O3 | Et3N | — | 120 | — | 80 |
22 | Ru⁃Fe/γ⁃Al2O3 | Et3N | — | 100 | — | 52 |
23 c | Ru⁃Fe/γ⁃Al2O3 | Et3N | — | 140 | — | 40 |
Compd. | Appearance | Yield(%) | m. p./℃ | HRMS, m/z[M+H]+(calcd.) |
---|---|---|---|---|
3a | Yellow solid | 84 | 131—133 | 168.0760(168.0759) |
3b | Yellow solid | 79 | 119—120 | 183.0917(183.0915) |
3c | Yellow solid | 76 | 105—107 | 199.0866(199.0862) |
3d | Yellow solid | 64 | 99—101 | 237.0634(237.0631) |
3e | Yellow solid | 51 | 201—203 | 194.0713(194.0710) |
3f | Yellow solid | 66 | 166—167 | 246.9865(246.9862) |
3g | Yellow solid | 52 | 109—112 | 219.0917(219.0916) |
3h | Yellow solid | 55 | 235—236 | 294.1157(294.1155) |
4a | Yellow solid | 82 | 136—138 | 183.0917(183.0915) |
4b | Yellow solid | 80 | 89—90 | 197.1073(197.1071) |
4c | Yellow solid | 78 | 90—92 | 213.1022(213.1019) |
4d | Yellow solid | 67 | 106—108 | 251.0791(251.0790) |
4e | White solid | 50 | 232—234 | 208.0869(208.0865) |
4f | Yellow solid | 65 | 167—168 | 261.0022(261.0020) |
4i | Yellow solid | 51 | 125—126 | 247.1230(247.1229) |
4j | Yellow solid | 40 | 156—159 | 267.0684(267.0683) |
4a′ | Red solid | 56 | 128—129 | 313.1579(313.1580) |
Table 2 Appearances, yields, melting points(m. p.) and HRMS data of compounds 3a—3h, 4a—4j and 4a′
Compd. | Appearance | Yield(%) | m. p./℃ | HRMS, m/z[M+H]+(calcd.) |
---|---|---|---|---|
3a | Yellow solid | 84 | 131—133 | 168.0760(168.0759) |
3b | Yellow solid | 79 | 119—120 | 183.0917(183.0915) |
3c | Yellow solid | 76 | 105—107 | 199.0866(199.0862) |
3d | Yellow solid | 64 | 99—101 | 237.0634(237.0631) |
3e | Yellow solid | 51 | 201—203 | 194.0713(194.0710) |
3f | Yellow solid | 66 | 166—167 | 246.9865(246.9862) |
3g | Yellow solid | 52 | 109—112 | 219.0917(219.0916) |
3h | Yellow solid | 55 | 235—236 | 294.1157(294.1155) |
4a | Yellow solid | 82 | 136—138 | 183.0917(183.0915) |
4b | Yellow solid | 80 | 89—90 | 197.1073(197.1071) |
4c | Yellow solid | 78 | 90—92 | 213.1022(213.1019) |
4d | Yellow solid | 67 | 106—108 | 251.0791(251.0790) |
4e | White solid | 50 | 232—234 | 208.0869(208.0865) |
4f | Yellow solid | 65 | 167—168 | 261.0022(261.0020) |
4i | Yellow solid | 51 | 125—126 | 247.1230(247.1229) |
4j | Yellow solid | 40 | 156—159 | 267.0684(267.0683) |
4a′ | Red solid | 56 | 128—129 | 313.1579(313.1580) |
Compd. | 1H NMR(400 MHz), δ | 13C NMR(100 MHz), δ |
---|---|---|
4a′ | 8.10(d, J=15.8 Hz, 1H), 8.02(dd, J=6.1, 3.4 Hz, 1H), 7.92(d, J=2.9 Hz, 1H), 7.80(dd, J=6.2, 3.4 Hz, 1H), 7.61(d, J=8.3 Hz, 2H), 7.42(dd, J=6.3, 3.4 Hz, 2H), 7.31(d, J= 15.8 Hz, 1H), 7.12(d, J=4.1 Hz, 1H), 6.89(t, J=3.5 Hz, 1H), 6.73(d, J=8.4 Hz, 2H), 3.02(s, 6H) | 151.18, 150.44, 137.66, 136.02, 129.35, 129.15, 127.06, 126.50, 126.07, 125.37, 124.43, 117.69, 114.61, 113.76, 113.66, 112.13, 106.33, 40.33 |
3a | 8.82(s, 1H), 7.98(dd, J=8.1, 1.5 Hz, 1H), 7.93—7.89(m, 1H), 7.84(dd, J=8.1, 1.4 Hz, 1H), 7.63—7.41(m, 2H), 6.90(dd, J=10.0, 3.4 Hz, 2H) | 145.72, 135.69, 130.02, 127.83, 126.43, 125.20, 114.30, 114.09, 113.82, 110.13, 107.47 |
3b | 8.80(s, 1H), 8.33(d, J=2.9 Hz, 1H), 7.84(ddd, J=18.8, 7.6, 2.2 Hz, 1H), 7.36—7.27(m, 2H), 6.97—6.83(m, 3H), 2.97(s, 4H) | 145.54, 137.27, 131.27, 128.30, 127.19, 124.76, 120.52, 113.81, 109.10, 107.25, 24.04 |
Compd. | 1H NMR(400 MHz), δ | 13C NMR(100 MHz), δ |
3c | 8.82(s, 1H), 8.78—8.73(m, 1H), 7.61(dd, J=8.1, 1.3 Hz, 1H), 7.39(t, J=8.1 Hz, 1H), 7.11—7.05(m, 1H), 6.96(dd, J=4.1, 1.4 Hz, 1H), 6.87(dd, J=4.0, 2.7 Hz, 1H), 4.10(s, 3H) | 150.00, 146.09, 138.07, 127.03, 124.45, 122.14, 121.93, 119.43, 113.08, 109.18, 106.93, 56.23 |
3d | 8.88(s, 1H), 8.27(s, 1H), 8.01—7.92(m, 2H), 7.78(s, 1H), 6.99(dd, J=8.7, 3.5 Hz, 2H) | 147.10, 135.50, 130.17, 127.67(q, J=5.0 Hz), 127.27, 126.58, 125.34(d, J=272.7 Hz), 124.33(q, J=3.7 Hz), 115.14, 114.65, 108.72 |
3e | 8.91(s, 1H), 8.30(d, J=1.9 Hz, 1H), 8.03—7.95(m, 2H), 7.84—7.72(m, 1H), 7.03(dt, J=6.8, 3.8 Hz, 2H) | 147.56, 135.82, 134.75, 130.54, 126.51, 118.41, 115.63, 115.33, 115.12, 109.16, 108.70 |
3f | 9.01(s, 1H), 8.08—7.99(m, 2H), 7.72—7.58(m, 2H), 7.50(q, J=7.5 Hz, 2H), 7.22(s, 1H) | 166.4, 161.5, 157.6, 138.0, 137.8, 136.6, 135.4, 135.3, 134.4, 131.5, 130.5, 129.0, 126.7, 125.8, 125.6, 124.8, 121.7, 121.2, 52.7147.99, 130.45, 128.84, 124.55, 124.25, 122.98, 122.80, 114.97, 114.69, 101.06 |
3g | 9.01(s, 1H), 8.08—7.99(m, 2H), 7.72—7.58(m, 2H), 7.50(q, J=7.5 Hz, 2H), 7.22(s, 1H) | 147.99, 130.45, 128.84, 124.55, 124.25, 122.98, 122.80, 114.97, 114.69, 101.06 |
3h | 9.10(s, 1H), 8.57—8.53(m, 2H), 8.15(d, J=8.2 Hz, 1H), 8.04(d, J=7.9 Hz, 1H), 7.78—7.59(m, 7H), 7.51(dt, J=16.2, 8.1 Hz, 4H) | 147.29, 136.48, 132.57, 132.38, 130.94, 130.37, 130.17, 129.18, 128.86, 128.06, 127.57, 126.28, 125.04, 124.33, 123.06, 121.65, 115.87, 115.05, 114.68, 111.47 |
4a | 7.97—7.89(m, 2H), 7.84(d, J=7.9 Hz, 1H), 7.54—7.41(m, 2H), 6.94—6.85(m, 2H), 2.77(s, 3H) | 153.54, 135.91, 129.25, 127.29, 126.91, 126.27, 125.11, 114.22, 113.65, 113.49, 106.51, 22.01 |
4b | 8.30(d, J=2.7 Hz, 1H), 7.83(d, J=7.9 Hz, 1H), 7.32(dt, J=15.7, 7.6 Hz, 2H), 6.94(d, J=3.8 Hz, 1H), 6.88—6.84(m, 1H), 2.95(s, 3H), 2.75(s, 3H) | 153.21, 137.51, 130.46, 127.71, 127.59, 127.50, 125.34, 124.54, 119.92, 112.79, 105.96, 23.92, 21.93 |
4c | 8.79(dd, J=2.9, 1.4 Hz, 1H), 7.64—7.57(m, 1H), 7.41(t, J=8.2 Hz, 1H), 7.05(d, J=8.1 Hz, 1H), 6.95(dd, J=4.1, 1.4 Hz, 1H), 6.86—6.80(m, 1H), 4.10(s, 3H), 2.76(s, 3H) | 153.92, 149.82, 138.16, 126.75, 124.31, 122.06, 121.31, 118.68, 112.45, 108.52, 105.92, 56.19, 22.01 |
4d | 8.22(s, 1H), 7.99—7.89(m, 2H), 7.73(dd, J=8.5, 2.1 Hz, 1H), 7.02—6.92(m, 2H), 2.79(s, 3H) | 155.29, 135.64, 129.42, 127.21(q, J=5.2 Hz), 126.88(d, J=272.5 Hz), 126.39, 123.38(q, J=3.4 Hz), 122.68, 114.97, 114.51, 114.35, 107.66, 22.09 |
4e | 8.22(s, 1H), 7.97(d, J=2.8 Hz, 1H), 7.92(d, J=8.5 Hz, 1H), 7.74(dd, J=8.3, 1.9 Hz, 1H), 7.04—6.95(m, 2H), 2.79(s, 3H) | 155.91, 135.95, 133.87, 130.34, 129.71, 126.37, 118.61, 115.28, 115.09, 114.89, 108.49, 108.24, 22.12 |
4f | 7.96—7.86(m, 1H), 7.82(dd, J=9.0, 5.1 Hz, 1H), 7.64(ddd, J=23.1, 9.5, 2.8 Hz, 1H), 7.31—7.20(m, 1H), 6.99—6.86(m, 2H), 2.76(s, 3H) | 159.80(d, J=241.8 Hz), 154.9, 137.1(d, J=11.3 Hz), 126.0, 123.9, 114.7(d, J=4.6 Hz), 114.6, 114.5, 114.4, 113.6, 106.9, 22.0 |
4i | 8.34(dd, J=8.4, 3.4 Hz, 2H), 7.88(dd, J=11.2, 7.9 Hz, 2H), 7.53(q, J=9.5, 8.8 Hz, 2H), 7.45(t, J=7.5 Hz, 1H), 7.36(t, J=7.6 Hz, 1H), 2.91(s, 2H), 2.77(s, 2H) | 155.99, 135.25, 131.76, 130.51, 129.91, 128.97, 127.72, 126.61, 124.61, 123.73, 121.93, 120.56, 114.41, 114.37, 110.01, 25.65, 11.27 |
4j | 8.32(d, J=2.1 Hz, 1H), 8.29(d, J=8.6 Hz, 1H), 7.95(d, J=8.0 Hz, 1H), 7.84(d, J=8.5 Hz, 1H), 7.58(t, J=7.8 Hz, 1H), 7.46(t, J=7.5 Hz, 1H), 7.36(dd, J=8.5, 2.1 Hz, 1H), 7.10(s, 1H), 2.76(s, 3H) | 155.35, 134.28, 133.08, 132.75, 130.63, 130.37, 129.34, 129.06, 124.70, 124.19, 122.99, 122.82, 114.67, 114.29, 100.70, 22.35 |
Table 3 1H NMR and 13C NMR data of compounds 4a′, 3a—3h and 4a—4j*
Compd. | 1H NMR(400 MHz), δ | 13C NMR(100 MHz), δ |
---|---|---|
4a′ | 8.10(d, J=15.8 Hz, 1H), 8.02(dd, J=6.1, 3.4 Hz, 1H), 7.92(d, J=2.9 Hz, 1H), 7.80(dd, J=6.2, 3.4 Hz, 1H), 7.61(d, J=8.3 Hz, 2H), 7.42(dd, J=6.3, 3.4 Hz, 2H), 7.31(d, J= 15.8 Hz, 1H), 7.12(d, J=4.1 Hz, 1H), 6.89(t, J=3.5 Hz, 1H), 6.73(d, J=8.4 Hz, 2H), 3.02(s, 6H) | 151.18, 150.44, 137.66, 136.02, 129.35, 129.15, 127.06, 126.50, 126.07, 125.37, 124.43, 117.69, 114.61, 113.76, 113.66, 112.13, 106.33, 40.33 |
3a | 8.82(s, 1H), 7.98(dd, J=8.1, 1.5 Hz, 1H), 7.93—7.89(m, 1H), 7.84(dd, J=8.1, 1.4 Hz, 1H), 7.63—7.41(m, 2H), 6.90(dd, J=10.0, 3.4 Hz, 2H) | 145.72, 135.69, 130.02, 127.83, 126.43, 125.20, 114.30, 114.09, 113.82, 110.13, 107.47 |
3b | 8.80(s, 1H), 8.33(d, J=2.9 Hz, 1H), 7.84(ddd, J=18.8, 7.6, 2.2 Hz, 1H), 7.36—7.27(m, 2H), 6.97—6.83(m, 3H), 2.97(s, 4H) | 145.54, 137.27, 131.27, 128.30, 127.19, 124.76, 120.52, 113.81, 109.10, 107.25, 24.04 |
Compd. | 1H NMR(400 MHz), δ | 13C NMR(100 MHz), δ |
3c | 8.82(s, 1H), 8.78—8.73(m, 1H), 7.61(dd, J=8.1, 1.3 Hz, 1H), 7.39(t, J=8.1 Hz, 1H), 7.11—7.05(m, 1H), 6.96(dd, J=4.1, 1.4 Hz, 1H), 6.87(dd, J=4.0, 2.7 Hz, 1H), 4.10(s, 3H) | 150.00, 146.09, 138.07, 127.03, 124.45, 122.14, 121.93, 119.43, 113.08, 109.18, 106.93, 56.23 |
3d | 8.88(s, 1H), 8.27(s, 1H), 8.01—7.92(m, 2H), 7.78(s, 1H), 6.99(dd, J=8.7, 3.5 Hz, 2H) | 147.10, 135.50, 130.17, 127.67(q, J=5.0 Hz), 127.27, 126.58, 125.34(d, J=272.7 Hz), 124.33(q, J=3.7 Hz), 115.14, 114.65, 108.72 |
3e | 8.91(s, 1H), 8.30(d, J=1.9 Hz, 1H), 8.03—7.95(m, 2H), 7.84—7.72(m, 1H), 7.03(dt, J=6.8, 3.8 Hz, 2H) | 147.56, 135.82, 134.75, 130.54, 126.51, 118.41, 115.63, 115.33, 115.12, 109.16, 108.70 |
3f | 9.01(s, 1H), 8.08—7.99(m, 2H), 7.72—7.58(m, 2H), 7.50(q, J=7.5 Hz, 2H), 7.22(s, 1H) | 166.4, 161.5, 157.6, 138.0, 137.8, 136.6, 135.4, 135.3, 134.4, 131.5, 130.5, 129.0, 126.7, 125.8, 125.6, 124.8, 121.7, 121.2, 52.7147.99, 130.45, 128.84, 124.55, 124.25, 122.98, 122.80, 114.97, 114.69, 101.06 |
3g | 9.01(s, 1H), 8.08—7.99(m, 2H), 7.72—7.58(m, 2H), 7.50(q, J=7.5 Hz, 2H), 7.22(s, 1H) | 147.99, 130.45, 128.84, 124.55, 124.25, 122.98, 122.80, 114.97, 114.69, 101.06 |
3h | 9.10(s, 1H), 8.57—8.53(m, 2H), 8.15(d, J=8.2 Hz, 1H), 8.04(d, J=7.9 Hz, 1H), 7.78—7.59(m, 7H), 7.51(dt, J=16.2, 8.1 Hz, 4H) | 147.29, 136.48, 132.57, 132.38, 130.94, 130.37, 130.17, 129.18, 128.86, 128.06, 127.57, 126.28, 125.04, 124.33, 123.06, 121.65, 115.87, 115.05, 114.68, 111.47 |
4a | 7.97—7.89(m, 2H), 7.84(d, J=7.9 Hz, 1H), 7.54—7.41(m, 2H), 6.94—6.85(m, 2H), 2.77(s, 3H) | 153.54, 135.91, 129.25, 127.29, 126.91, 126.27, 125.11, 114.22, 113.65, 113.49, 106.51, 22.01 |
4b | 8.30(d, J=2.7 Hz, 1H), 7.83(d, J=7.9 Hz, 1H), 7.32(dt, J=15.7, 7.6 Hz, 2H), 6.94(d, J=3.8 Hz, 1H), 6.88—6.84(m, 1H), 2.95(s, 3H), 2.75(s, 3H) | 153.21, 137.51, 130.46, 127.71, 127.59, 127.50, 125.34, 124.54, 119.92, 112.79, 105.96, 23.92, 21.93 |
4c | 8.79(dd, J=2.9, 1.4 Hz, 1H), 7.64—7.57(m, 1H), 7.41(t, J=8.2 Hz, 1H), 7.05(d, J=8.1 Hz, 1H), 6.95(dd, J=4.1, 1.4 Hz, 1H), 6.86—6.80(m, 1H), 4.10(s, 3H), 2.76(s, 3H) | 153.92, 149.82, 138.16, 126.75, 124.31, 122.06, 121.31, 118.68, 112.45, 108.52, 105.92, 56.19, 22.01 |
4d | 8.22(s, 1H), 7.99—7.89(m, 2H), 7.73(dd, J=8.5, 2.1 Hz, 1H), 7.02—6.92(m, 2H), 2.79(s, 3H) | 155.29, 135.64, 129.42, 127.21(q, J=5.2 Hz), 126.88(d, J=272.5 Hz), 126.39, 123.38(q, J=3.4 Hz), 122.68, 114.97, 114.51, 114.35, 107.66, 22.09 |
4e | 8.22(s, 1H), 7.97(d, J=2.8 Hz, 1H), 7.92(d, J=8.5 Hz, 1H), 7.74(dd, J=8.3, 1.9 Hz, 1H), 7.04—6.95(m, 2H), 2.79(s, 3H) | 155.91, 135.95, 133.87, 130.34, 129.71, 126.37, 118.61, 115.28, 115.09, 114.89, 108.49, 108.24, 22.12 |
4f | 7.96—7.86(m, 1H), 7.82(dd, J=9.0, 5.1 Hz, 1H), 7.64(ddd, J=23.1, 9.5, 2.8 Hz, 1H), 7.31—7.20(m, 1H), 6.99—6.86(m, 2H), 2.76(s, 3H) | 159.80(d, J=241.8 Hz), 154.9, 137.1(d, J=11.3 Hz), 126.0, 123.9, 114.7(d, J=4.6 Hz), 114.6, 114.5, 114.4, 113.6, 106.9, 22.0 |
4i | 8.34(dd, J=8.4, 3.4 Hz, 2H), 7.88(dd, J=11.2, 7.9 Hz, 2H), 7.53(q, J=9.5, 8.8 Hz, 2H), 7.45(t, J=7.5 Hz, 1H), 7.36(t, J=7.6 Hz, 1H), 2.91(s, 2H), 2.77(s, 2H) | 155.99, 135.25, 131.76, 130.51, 129.91, 128.97, 127.72, 126.61, 124.61, 123.73, 121.93, 120.56, 114.41, 114.37, 110.01, 25.65, 11.27 |
4j | 8.32(d, J=2.1 Hz, 1H), 8.29(d, J=8.6 Hz, 1H), 7.95(d, J=8.0 Hz, 1H), 7.84(d, J=8.5 Hz, 1H), 7.58(t, J=7.8 Hz, 1H), 7.46(t, J=7.5 Hz, 1H), 7.36(dd, J=8.5, 2.1 Hz, 1H), 7.10(s, 1H), 2.76(s, 3H) | 155.35, 134.28, 133.08, 132.75, 130.63, 130.37, 129.34, 129.06, 124.70, 124.19, 122.99, 122.82, 114.67, 114.29, 100.70, 22.35 |
[1] | Mckendry P., Bioresour. Technol., 2002, 83(1), 37—46 |
[2] | Huber G. W., Iborra S., Corma A., Chem. Rev., 2006, 106(9), 4044—4098 |
[3] | Ragauskas A. J., Williams C. K., Davison B. H., Britovsek G., Cairney J., Eckert C. A., Frederick W. J., Hallett J. P., Leak D. J., Liotta C. L., Mielenz J. R., Murphy R., Templer R., Tschaplinski T., Science, 2006, 311(5760), 484—489 |
[4] | Kong L. Z., Miao G., Luo H., Sun Y. H., Chem. J. Chinese Universities, 2020, 41(1), 20190561 |
孔令照, 苗改, 罗虎, 孙予罕. 高等学校化学学报, 2020, 41(1), 20190561 | |
[5] | Chen W. S., Luo L., Liu Y. G., Zhou H., Kong X. G., Li Z. H., Duan H. H., Chem. J. Chinese Universities, 2022, 43(2), 20210683 |
陈望松, 罗兰, 刘玉广, 周华, 孔祥贵, 栗振华, 段昊泓. 高等学校化学学报, 2022, 43(2), 20210683 | |
[6] | Zhou C. H. C., Beltramini J. N., Fan Y. X., Lu G. Q. M., Chem. Soc. Rev., 2008, 37(3), 527—549 |
[7] | Shen Y. H., Zhang S. H., Li H. J., Ren Y., Liu H. C., Chem. Eur. J., 2010, 16(25), 7368—7371 |
[8] | Watanabe M., Lida T., Aizawa Y., Aida T. M., Inomata H., Bioresour. Technol., 2007, 98(6), 1285—1290 |
[9] | Sun J. Y., Liu H. C., Green Chem., 2011, 13(1), 135—142 |
[10] | Huber G. W., Cortright R. D., Dumesic J. A., Angew. Chem. Int. Ed., 2004, 43(12), 1549—1551 |
[11] | Zhang Z., Wang M., Zhou H. R., Wang F., J. Am. Chem. Soc., 2021, 143(17), 6533—6541 |
[12] | Froidevaux V., Negrell C., Caillol S., Pascault J. P., Boutevin B., Chem. Rev., 2016, 116(22), 14181—14224 |
[13] | Dai X. C., Adomeit S., Rabeah J., Kreyenschulte C., Brückner A., Wang H. L., Shi F., Angew. Chem. Int. Ed., 2019, 58(16), 5251—5255 |
[14] | Pelckmans M., Renders T., van de Vyver S., Sels B. F., Green Chem., 2017, 19(22), 5303—5331 |
[15] | Yan Q., Wu X., Jiang H., Wang H., Xu F., Li H., Zhang H., Coord. Chem. Rev., 2024, 502, 215622 |
[16] | Hameury S., Bensalem H., Vigier K. D., Catalysts, 2022, 12(11), 1306 |
[17] | Rathod P. V., Deonikar A. G., Puguan J. M. C., Kim H., Fuel, 2020, 264, 116822 |
[18] | Edwards M. G., Jazzar R. F. R., Paine B. M., Shermer D. J., Whittlesey M. K., Williams J. M. J., Edney D. D., Chem. Commun., 2004, 1, 90—91 |
[19] | Corma A., Navas J., Sabater M. J., Chem. Rev., 2018, 118(4), 1410—1459 |
[20] | Irrgang T., Kempe R., Chem. Rev., 2019, 119(4), 2524—2549 |
[21] | Kim Y., Li C. J., Green Synth. Catal., 2020, 1(1), 1—11 |
[22] | Shen G. F., Andrioletti B., Queneau Y., Curr. Opin. Green Sustain. Chem., 2020, 26, 100384 |
[23] | Jia L., Wang X., Gao X. L., Makha M., Wang X. C., Li Y. H., Green Synth. Catal., 2022, 3(3), 259—264 |
[24] | Liu M. J., Li H. J., Zhang J., Liu H. F., Wang F., Angew. Chem. Int. Ed., 2024, 63(5), e202315795 |
[25] | Zuo H. L., Lei S. M., Zhang R., Li Y. X., Chen W., Chem. J. Chinese Universities, 2021, 42(9), 20210313 |
左怀龙, 雷思敏, 张锐, 李玉新, 陈伟. 高等学校化学学报, 2021, 42(9), 20210313 | |
[26] | Charpe V. P., Ragupathi A., Sagadevan A., Hwang K. C., Green Chem., 2021, 23(14), 5024—5030 |
[27] | Liu S. S., Zhao C., Zhou X. Y., Ma Y. M., Journal of Shaanxi University of Science, 2020, 385), 91—95(刘珊珊, 赵晨, 周鲜颖, 马养民. 陕西科技大学学报, 2020, 38(5), 91—95 |
[28] | Chakrabarti K., Majia M., Kundu S., Green Chem., 2019, 21(8), 1999—2004 |
[29] | Li J. X., Zhang J. L., Yang H. M., Gao Z., Jiang G. X., J. Org. Chem., 2017, 82(1), 765—769 |
[30] | Kim K., Kim H. Y., Oh K., RSC Adv., 2020, 10(52), 31101—31105 |
[31] | Su J. K., Hu X. Y., Huang H., Guo Y., Song Q. L., Nat. Commun., 2021, 12(1), 4986 |
[32] | Liu A., Ni C. F., Xie Q. Q., Hu J. B., Angew. Chem. Int. Ed., 2022, 61(8), e202115467 |
[33] | Liu S. S., Liang J. H., Zhang P. J., Li Z. Z., Jiao L. Y., Jia W., Ma Y. M., Szostak M., Org. Chem. Front., 2022, 10(1), 22—29 |
[34] | Martins B. M., Blaser M., Feliks M., Ullmann G. M., Buckel W., Selmer T., J. Am. Chem. Soc., 2011, 133(37), 14666—14674 |
[35] | Feliks M., Martins B. M., Ullmann G. M., J. Am. Chem. Soc., 2013, 135(39),14574—14585 |
[36] | Shisler K. A., Broderick J. B., Arch. Biochem. Biophys., 2014, 546, 64—71 |
[37] | Nguyen T. B., Ermolenko L., Corbin M., Al⁃Mourabit A., Org. Chem. Front., 2014, 1(10), 1157—1160 |
[38] | Liu S. S., Wan J., Zhang Y. Y., Luo W. Y., Dong W. W., Wang C., Jiao L. Y., Green Chem., 2025, 27(8),2293—2301 |
[39] | Ding C. C., Li S. C., Feng K. L., Ma C., Green Chem., 2021, 23(15), 5542—5548 |
[1] | KONG Lingzhao,MIAO Gai,LUO Hu,SUN Yuhan. Advances in Hydrothermal Catalysis Conversion of Biomass into Oxygen-containing Chemicals † [J]. Chem. J. Chinese Universities, 2020, 41(1): 11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||