Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (5): 20220731.doi: 10.7503/cjcu20220731
• Review • Previous Articles Next Articles
XIN Benjian1, WANG Rui2, LIU Lili1(), NIU Zhiqiang2
Received:
2022-11-25
Online:
2023-05-10
Published:
2023-02-02
Contact:
LIU Lili
E-mail:lililiuhappy@163.com
Supported by:
CLC Number:
TrendMD:
XIN Benjian, WANG Rui, LIU Lili, NIU Zhiqiang. Recent Progress of Lithium-based Semi-solid Flow Batteries[J]. Chem. J. Chinese Universities, 2023, 44(5): 20220731.
Fig.3 Charge/discharge curves of semi⁃solid injection in a half Li⁃SSFB using LCO suspension(A)[20] and schematic of a carbon⁃free LTO/LCO Li⁃SSFB(B)[21](A) Copyright 2011, Wiley-VCH.; (B) Copyright 2017, Elsevier.
Fig.9 Conventional lithium⁃ion battery electrode materials used in Li⁃SSFB(A) CV curves of VO2 and LiVPO4F in electrolytes of different concentrations; (B) long-term cycling performances of the LiVPO4F||VO2 at 20 mA/cm2[82]; (C) synthetic process of Nb2O5@C/CNTs nanocomposites; (D) schematic crystal structure of CSP[87].
Fig.10 Schematic of Li⁃O2 SSFBs(A), potential profile of O2⁃saturated catholyte during galvanostatic discharge/charge cycles at 0.25 mA/cm2 in conventional electrochemical cell(B)[32] and potential profiles of PB catholyte at 0.5 mA/cm2 from 61th to 120th cycle(C)[34](A, B) Copyright 2016, Elsevier; (C) Copyright 2018, Elsevier.
Fig.11 Schematic diagram of fabricating the S⁃KB@rGO composite(A), typical color changes of the electrolyte solutions consisting of two mixtures(B), cycle performance of the Li⁃SiP/S⁃C in intermittent⁃flow mode(C)[37] and cycling retention in specific capacity and Coulombic efficiency of Se⁃KB mixture slurry at 0.5 mA/cm2(D)[102](B, C) Copyright 2018, Elsevier; (D) Copyright 2021, Wiley⁃VCH.
Fig.12 Advantages and electrochemical performance of Li⁃organic SSFBs(A) Comparison of voltage and volume specific capacity of different organic materials; (B) cycling retention in volumetric capacity and Coulombic efficiency of different ratio slurries at 0.2 mA/cm2[39]; (C) summary of the reported cell voltage, effective molarity, and energy density of various aqueous and nonaqueous redox flow batteries[103]; (D) schematic illustration of the hybrid Li-organic SSFBs; (E) comparison of voltage and cost of LiI-S and TEMPO-MPT systems[40].
Type | Cathode | Anode | Conductive additive | Electrolyte | Platform voltage/V | Capacity | Ref. |
---|---|---|---|---|---|---|---|
Li⁃ion SSFBs | LCO | LTO | KB | LiPF6 | 2.35 | 145 mA·h/g at 1C | [ |
LFP | Li | KB | LiTFSI | 3.35 | 152 mA·h/g at 0.5 mA/cm2 | [ | |
LMFP | Li | KB | LiTFSI | 4.0 | 129 mA·h/g at 0.3 mA/cm2 | [ | |
LiI | Si | KB | LiPF6 | 2.6 | >1200 mA·h/g at 0.2 mA/cm2 | [ | |
SiOx | Li | SWCNT | LiTFSI | 0.14 | >1200 mA·h/g at 0.2 mA/cm2 | [ | |
LiVPO4F | VO2 | MWCNT | LiTFSI | 1.5 | 66 mA·h/g at 20 mA/cm2 | [ | |
Nb2O5 | Li | SWCNT | LiTFSI | 1.5 | 220 mA·h/g at 0.3 mA/cm2 | [ | |
LFP | CuSi2P3 | Super P | LiPF6 | 3 | 150 mA·h/g at 0.3 mA/cm2 | [ | |
Li⁃O2 SSFBs | O2 | Li | Super P | LiTFSI | 3.85 | 370 W·h/L at 0.25 mA/cm2 | [ |
O2 | Li | Pureblack 315 | LiTFSI | 2.5 | >250 mA·h/g at 0.5 mA/cm2 | [ | |
Li⁃S/Se SSFBs | S | Li | KB | LiTFSI and LiNO3 | 2 | 1340 mA·h/g at 1 mA/cm2 | [ |
S | Li | KB@rGO | LiTFSI and LiNO3 | 2.1 | 1320 mA·h/g at 0.05C | [ | |
Se | Li | KB | LiTFSI | 1.9 | 330 mA·h/g at 0.5 mA/cm2 | [ | |
Li⁃organic SSFBs | MPT | Li | KB | LiPF6 | 3.45 | 189 W·h/L at 0.1 mA/cm2 | [ |
TEMPO⁃MPT | Li | KB | LiPF6 | 3.4 | 260 W·h/L at 0.1 mA/cm2 | [ |
Table 1 Comparison for electrochemical performances of Li-SSFBs
Type | Cathode | Anode | Conductive additive | Electrolyte | Platform voltage/V | Capacity | Ref. |
---|---|---|---|---|---|---|---|
Li⁃ion SSFBs | LCO | LTO | KB | LiPF6 | 2.35 | 145 mA·h/g at 1C | [ |
LFP | Li | KB | LiTFSI | 3.35 | 152 mA·h/g at 0.5 mA/cm2 | [ | |
LMFP | Li | KB | LiTFSI | 4.0 | 129 mA·h/g at 0.3 mA/cm2 | [ | |
LiI | Si | KB | LiPF6 | 2.6 | >1200 mA·h/g at 0.2 mA/cm2 | [ | |
SiOx | Li | SWCNT | LiTFSI | 0.14 | >1200 mA·h/g at 0.2 mA/cm2 | [ | |
LiVPO4F | VO2 | MWCNT | LiTFSI | 1.5 | 66 mA·h/g at 20 mA/cm2 | [ | |
Nb2O5 | Li | SWCNT | LiTFSI | 1.5 | 220 mA·h/g at 0.3 mA/cm2 | [ | |
LFP | CuSi2P3 | Super P | LiPF6 | 3 | 150 mA·h/g at 0.3 mA/cm2 | [ | |
Li⁃O2 SSFBs | O2 | Li | Super P | LiTFSI | 3.85 | 370 W·h/L at 0.25 mA/cm2 | [ |
O2 | Li | Pureblack 315 | LiTFSI | 2.5 | >250 mA·h/g at 0.5 mA/cm2 | [ | |
Li⁃S/Se SSFBs | S | Li | KB | LiTFSI and LiNO3 | 2 | 1340 mA·h/g at 1 mA/cm2 | [ |
S | Li | KB@rGO | LiTFSI and LiNO3 | 2.1 | 1320 mA·h/g at 0.05C | [ | |
Se | Li | KB | LiTFSI | 1.9 | 330 mA·h/g at 0.5 mA/cm2 | [ | |
Li⁃organic SSFBs | MPT | Li | KB | LiPF6 | 3.45 | 189 W·h/L at 0.1 mA/cm2 | [ |
TEMPO⁃MPT | Li | KB | LiPF6 | 3.4 | 260 W·h/L at 0.1 mA/cm2 | [ |
1 | Zhao Y., Ding Y., Li Y., Peng L., Byon H. R., Goodenough J. B., Yu G., Chem. Soc. Rev., 2015, 44(22), 7968—7996 |
2 | Zhang C., Zhang L., Ding Y., Guo X., Yu G., ACS Energy Lett., 2018, 3(12), 2875—2883 |
3 | Zhang S., Guo W., Yang F., Zheng P., Qiao R., Li Z., Batteries & Supercaps, 2019, 2(7), 627—637 |
4 | Hou S., Chen L., Fan X., Fan X., Ji X., Wang B., Cui C., Chen J., Yang C., Wang W., Li C., Wang C., Nat. Commun., 2022, 13(1), 1281 |
5 | Zhang L., Feng R., Wang W., Yu G., Nat. Rev. Chem., 2022, 6, 524—543 |
6 | Zhao Z., Zhang C., Li X., J. Energy Chem., 2022, 67, 621—639 |
7 | Yang X. B., Zhao L., Sui X. L., Meng L. H.,Wang Z. B., Acta Phys. Chim. Sin., 2019, 35(12), 1372—1381 |
杨晓兵, 赵磊, 隋旭磊, 孟令辉, 王振波. 物理化学学报, 2019, 35(12), 1372—1381 | |
8 | Darling R. M., Gallagher K. G., Kowalski J. A., Ha S., Brushett F. R., Energy Environ. Sci., 2014, 7(11), 3459—3477 |
9 | Ye J., Yuan D., Ding M., Long Y., Long T., Sun L., Jia C., J. Power Sources, 2021, 482, 229023 |
10 | Zhang H., Sun C., J. Power Sources, 2021, 493, 229445 |
11 | Cong G. T., Lu Y. J, Acta Phys. Chim. Sin., 2022, 38(6), 2106008 |
丛广涛, 卢怡君. 物理化学学报, 2022, 38(6), 2106008 | |
12 | Lou X., Fu H., Xu J., Long Y., Yan S., Zou H., Lu B., He M., Ding M., Zhu X., Jia C., Energy Mater. Adv., 2022, 2022, 9865618 |
13 | Ventosa E., Curr. Opin. Chem. Eng., 2022, 37, 100834 |
14 | Huang Q., Li H., Grätzel M., Wang Q., Phys. Chem. Chem. Phys., 2013, 15(6), 1793—1797 |
15 | Hatzell K. B., Boota M., Gogotsi Y., Chem. Soc. Rev., 2015, 44(23), 8664—8687 |
16 | Akuzum B., Agartan L., Locco J., Kumbur E. C., J. Appl. Electrochem., 2017, 47(3), 369—380 |
17 | Narayanan A., Mugele F., Duits M. H. G., Langmuir, 2017, 33(7), 1629—1638 |
18 | Li B., Liu J., Natl. Sci. Rev., 2017, 4(1), 91—105 |
19 | Zhang L., Wu X., Qian W., Zhang H., Zhang S., Green Energy Environ., 2021, 6(1), 5—8 |
20 | Duduta M., Ho B., Wood V. C., Limthongkul P., Brunini V. E., Carter W. C., Chiang Y. M., Adv. Energy Mater., 2011, 1(4), 511—516 |
21 | Qi Z., Liu A. L., Koenig G. M., Electrochim. Acta, 2017, 228, 91—99 |
22 | Chen H., Liu Y., Zhang X., Lan Q., Chu Y., Li Y., Wu Q., J. Power Sources, 2021, 485, 229319 |
23 | Su P., Zhang H., Yang L., Xing C., Pan S., Lu W., Zhang S., Chem. Eng. J., 2022, 433, 133203 |
24 | Smith K. C., Chiang Y. M., Craig Carter W., J. Electrochem. Soc., 2014, 161(4), A486—A496 |
25 | Biendicho J. J., Flox C., Sanz L., Morante J. R., ChemSusChem, 2016, 9(15), 1938—1944 |
26 | Madec L., Youssry M., Cerbelaud M., Soudan P., Guyomard D., Lestriez B., J. Electrochem. Soc., 2014, 161(5), A693—A699 |
27 | Madec L., Youssry M., Cerbelaud M., Soudan P., Guyomard D., Lestriez B., ChemPlusChem, 2015, 80(2), 396—401 |
28 | Ventosa E., Zampardi G., Flox C., La Mantia F., Schuhmann W., Morante J. R., Chem. Commun., 2015, 51(81), 14973—14976 |
29 | Qi Z., Koenig G. M., J. Power Sources, 2016, 323, 97—106 |
30 | Hamelet S., Larcher D., Dupont L., Tarascon J. M., J. Electrochem. Soc., 2013, 160(3), A516—A520 |
31 | Chen H., Lai N. C., Lu Y. C., Chem. Mater., 2017, 29(17), 7533—7542 |
32 | Ruggeri I., Arbizzani C., Soavi F., Electrochim. Acta, 2016, 206, 291—300 |
33 | Soavi F., Ruggeri I., Arbizzani C., ECS Trans., 2016, 72(9), 1—9 |
34 | Ruggeri I., Arbizzani C., Soavi F., Carbon, 2018, 130, 749—757 |
35 | Chen H., Zou Q., Liang Z., Liu H., Li Q., Lu Y. C., Nat. Commun., 2015, 6(1), 5877 |
36 | Xu S., Zhang L., Zhang X., Cai Y., Zhang S., J. Mater. Chem. A, 2017, 5(25), 12904—12913 |
37 | Xu S., Cheng Y., Zhang L., Zhang K., Huo F., Zhang X., Zhang S., Nano Energy, 2018, 51, 113—121 |
38 | Xu S., Zhang L., Zhang H., Wei M., Guo X., Zhang S., Mater. Today Energy, 2020, 18, 100495 |
39 | Chen H., Zhou Y., Lu Y. C., ACS Energy Lett., 2018, 3(8), 1991—1997 |
40 | Zhang X., Zhang P., Chen H., ChemSusChem, 2021, 14(8), 1913—1920 |
41 | Pan F., Yang J., Jia C., Li H., Wang Q., J. Energy Chem., 2018, 27(5), 1362—1368 |
42 | Li W., Song B., Manthiram A., Chem. Soc. Rev., 2017, 46(10), 3006—3059 |
43 | Wang Y., Wang Z., Wu D., Niu Q., Lu P., Ma T., Su Y., Chen L., Li H., Wu F., eScience, 2022, 2(5), 537—545 |
44 | Guo Q., Xu F., Shen L., Deng S., Wang Z., Li M., Yao X., Energy Mater. Adv., 2022, 2022, 9753506 |
45 | Wu H., Cui Y., Nano Today, 2012, 7(5), 414—429 |
46 | Kang W., Zhao Y., Jia X., Hao L., Dang L., Wei H., Trans. Tianjin Univ., 2021, 27(1), 55—63 |
47 | Cao Z., Liu H., Huang W., Chen P., Liu Y., Yu Y., Shan Z., Meng S., Trans. Tianjin Univ., 2020, 26(1), 13—21 |
48 | Soavi F., Brilloni A., De Giorgio F., Poli F., Curr. Opin. Chem. Eng., 2022, 37, 100835 |
49 | Guo L., Wang J., Ma S., Zhang Y., Wang E., Peng Z., Sci. China Chem., 2017, 60(12), 1527—1532 |
50 | Yang Z. D., Chang Z. W., Xu J. J., Yang X. Y., Zhang X. B., Sci. China Chem., 2017, 60(12), 1540—1545 |
51 | Li J., Yang L., Yang S., Lee J. Y., Adv. Energy Mater., 2015, 5(24), 1501808 |
52 | Du L., Wang H., Yang M., Liu L., Niu Z., Small Struct., 2020, 1(3), 2000047 |
53 | Xue L., Li Y., Hu A., Zhou M., Chen W., Lei T., Yan Y., Huang J., Yang C., Wang X., Hu Y., Xiong J., Small Struct., 2022, 3(3), 2100170 |
54 | Zhao M., Li X. Y., Chen X., Li B. Q., Kaskel S., Zhang Q., Huang J. Q., eScience, 2021, 1(1), 44—52 |
55 | Zhang C., Chen H., Qian Y., Dai G., Zhao Y., Yu G., Adv. Mater., 2021, 33(15), 2008560 |
56 | Huang J., Dong X., Guo Z., Wang Y., Angew. Chem. Int. Ed., 2020, 59(42), 18322—18333 |
57 | Pham T. N., Wang Q., Ghilane J., Randriamahazaka H., ChemSusChem, 2020, 13(9), 2142—2159 |
58 | Barelli L., Bidini G., Ottaviano P. A., Pelosi D., Perla M., Gallorini F., Serangeli M., J. Energy Storage, 2021, 42, 103086 |
59 | Whitehead A. H., Rabbow T. J., Trampert M., Pokorny P., J. Power Sources, 2017, 351, 1—7 |
60 | Zhang Q., Zhang F., Zhang M., Yu Y., Yuan S., Liu Y., ACS Appl. Energy Mater., 2021, 4(7), 7209—7218 |
61 | Pan S., Zhang H., Xing C., Yang L., Su P., Bi J., Zhang S., J. Power Sources, 2021, 508, 230341 |
62 | Choo K. Y., Yoo C. Y., Han M. H., Kim D. K., J. Electroanal. Chem., 2017, 806, 50—60 |
63 | Youssry M., Kamand F. Z., Magzoub M. I., Nasser M. S., RSC Adv., 2018, 8(56), 32119—32131 |
64 | Yang K., Xiong S., Zhang H., J. Power Sources, 2022, 531, 231315 |
65 | Mourshed M., Niya S., Ojha R., Rosengarten G., Andrews J., Shabani B., Energy Storage Mater., 2021, 40, 461—489 |
66 | Richards J. J., Hipp J. B., Riley J. K., Wagner N. J., Butler P. D., Langmuir, 2017, 33(43), 12260—12266 |
67 | Shi Y., Chen G., Chen Z., Green Chem., 2018, 20(4), 851—862 |
68 | Shen B., Xu X., Liu W., Qin D., Wang W., J. Chin. Ceram. Soc., 2022, 50(5), 1201—1208 |
69 | Park M., Zhang X., Chung M., Less G. B., Sastry A. M., J. Power Sources, 2010, 195(24), 7904—7929 |
70 | Su C., Bu X., Xu L., Liu J., Zhang C., Electrochim. Acta, 2012, 64, 190—195 |
71 | Liu Q., He H., Li Z. F., Liu Y., Ren Y., Lu W., Lu J., Stach E. A., Xie J., ACS Appl. Mater. Interfaces, 2014, 6(5), 3282—3289 |
72 | Wu X. L., Guo Y. G., Su J., Xiong J. W., Zhang Y. L., Wan L. J., Adv. Energy Mater., 2013, 3(9), 1155—1160 |
73 | Nishimura S., Kobayashi G., Ohoyama K., Kanno R., Yashima M., Yamada A., Nat. Mater., 2008, 7(9), 707—711 |
74 | Gong C., Xue Z., Wen S., Ye Y., Xie X., J. Power Sources, 2016, 318, 93—112 |
75 | Wang J., Sun X., Energy Environ. Sci., 2012, 5(1), 5163—5185 |
76 | Wang J., Sun X., Energy Environ. Sci., 2015, 8(4), 1110—1138 |
77 | Dell’Era A., Pasquali M., Bauer E. M., Ciprioti V. S., Scaramuzzo F. A., Lupi C., Materials, 2018, 11(1), 56 |
78 | Köntje M., Memm M., Axmann P., Wohlfahrt⁃Mehrens M., Prog. Solid State Chem., 2014, 42(4), 106—117 |
79 | Narayanan A., Wijnperlé D., Mugele F., Buchholz D., Vaalma C., Dou X., Passerini S., Duits M. H. G., Electrochim. Acta, 2017, 251, 388—395 |
80 | Shen D., Chen T., Jia Y., Qin S., Dong W., Yang S., J. Chin. Ceram. Soc., 2022, 50(8), 2313—2325 |
81 | Pan S., Yang L., Su P., Zhang H., Zhang S., Small, 2022, 18(33), 2202139 |
82 | Wei J., Zhang P., Liu Y., Liang J., Xia Y., Tao A., Zhang K., Tie Z., Jin Z., ACS Energy Lett., 2022, 7(2), 862—870 |
83 | Li Y., Zhou Z., Gao X. P., Yan J., J. Power Sources, 2006, 160(1), 633—637 |
84 | Hu G., Gan Z., Cao Y., Du K., Du Y., Peng Z., Electrochim. Acta, 2018, 292, 502—510 |
85 | Tang Y., Yang L., Zhu Y., Zhang F., Zhang H., J. Mater. Chem. A, 2022, 10(10), 5620—5630 |
86 | Li W., Li X., Liao J., Zhao B., Zhang L., Huang L., Liu G., Guo Z., Liu M., Energy Environ. Sci., 2019, 12(7), 2286—2297 |
87 | Zhang X., Li W., Chen H., ACS Appl. Mater. Interfaces, 2021, 13(34), 40552—40561 |
88 | Shu C., Wang J., Long J., Liu H. K., Dou S. X., Adv. Mater., 2019, 31(15), 1804587 |
89 | Bi X., Amine K., Lu J., J. Mater. Chem. A, 2020, 8(7), 3563—3573 |
90 | Deng R., Wang M., Yu H., Luo S., Li J., Chu F., Liu B., Wu F., Energy Environ. Mater., 2021, 5(3), 777—779 |
91 | Bruce P. G., Freunberger S. A., Hardwick L. J., Tarascon J. M., Nat. Mater., 2012, 11(1), 19—29 |
92 | Yang Y., Zheng G., Cui Y., Energy Environ. Sci., 2013, 6(5), 1552—1558 |
93 | Dong K., Wang S., Yu J., RSC Adv., 2014, 4(88), 47517—47520 |
94 | Fan F. Y., Woodford W. H., Li Z., Baram N., Smith K. C., Helal A., McKinley G. H., Carter W. C., Chiang Y. M., Nano Lett., 2014, 14(4), 2210—2218 |
95 | Li G., Yang L., Jiang X., Zhang T., Lin H., Yao Q., Lee J. Y., J. Power Sources, 2018, 378, 418—422 |
96 | Tong B., Huang J., Zhou Z., Peng Z., Adv. Mater., 2018, 30(1), 1704841 |
97 | Xia C., Kwok C. Y., Nazar L. F., Science, 2018, 361(6404), 777—781 |
98 | Cui Y., Abouimrane A., Lu J., Bolin T., Ren Y., Weng W., Sun C., Maroni V. A., Heald S. M., Amine K., J. Am. Chem. Soc., 2013, 135(21), 8047—8056 |
99 | Yang C. P., Yin Y. X., Guo Y. G., J. Phys. Chem. Lett., 2015, 6(2), 256—266 |
100 | Zhou Y., Li Z., Lu Y. C., Nano Energy, 2017, 39, 554—561 |
101 | Abouimrane A., Dambournet D., Chapman K. W., Chupas P. J., Weng W., Amine K., J. Am. Chem. Soc., 2012, 134(10), 4505—4508 |
102 | Huang K., Zhou P., Chen H., Energy Technol., 2021, 9(8), 2100371 |
103 | Wei X., Xu W., Vijayakumar M., Cosimbescu L., Liu T., Sprenkle V., Wang W., Adv. Mater., 2014, 26(45), 7649—7653 |
[1] | WANG Pengcheng, LU Ming. Computational Study on the Chemical Structure, Explosive Properties and Sensitivity of N,N'-(1,3,4,5,7,8-hexanitrooctahydro-diimidazo [4,5-b:4',5'-e]pyrazine-2,6(1H,3H)-diylidene)dinitramide† [J]. Chem. J. Chinese Universities, 2014, 35(3): 596. |
[2] | ZHAO Jun-Fang, LI Nan, ZHANG Zhi-Pei, ZHANG Xing-Chen, GAO Feng-Xin . Quantum Chemistry Study of Nitrogen Cages N12 [J]. Chem. J. Chinese Universities, 2002, 23(10): 1944. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||