Chem. J. Chinese Universities ›› 2016, Vol. 37 ›› Issue (3): 409.doi: 10.7503/cjcu20150916
• Review • Previous Articles Next Articles
WU Xiaoyan1,2, LIU Linlin2,*(), XIE Zengqi2, MA Yuguang1,2,*(
)
Received:
2015-11-30
Online:
2016-03-10
Published:
2016-01-30
Contact:
LIU Linlin,MA Yuguang
E-mail:msliull@ scut. edu. cn;ygma@ scut. edu. cn
CLC Number:
TrendMD:
WU Xiaoyan, LIU Linlin, XIE Zengqi, MA Yuguang. Advance in Metal-based Nanoparticles for the Enhanced Performance of Organic Optoelectronics Devices†[J]. Chem. J. Chinese Universities, 2016, 37(3): 409.
Fig.1 Classical Jablonski diagram for the free-space condition(A) and the modified form in the presence of metal particles(B) E: Excitation; Em: metal enhanced excitation rate; Γm: radiative rate in the presence of metal.
Fig.2 Structure designs of plasmonic-enhanced OPVs[27](A) Nanostructure behaving as scattering centers; incident photons are scattered mostly into the material having a higher dielectric constant at the thin film surface; (B) embedded NPs positioned in organic semiconductors to enhance the near-field in the cell; scattering events also possibly occur in such solar cells; (C) a periodical structure induces SPPs, which can turn the incident solar flux by 90°. Copyright from the Royal Society of Chemistry.
Fig.3 Schematic device structure of OLEDs incorporating Au NPs, TEM and high-resolution TEM images of the synthesized Au NPs(A), time-resolved PL spectra detected at the wavelength of 530 nm via a 370 nm laser source(B), current density-voltage(C), luminous efficiency characteristics of Alq3 OLEDs with and without Au NPs(D) and current efficiency of red emission OLEDs with and without Au NPs(E)[54] Inset of (B) shows the absorption spectra of the PEDOT∶PSS mixed and without Au NPs and the PL spectrum of an Alq3 layer. Insets of (C, E) are the corresponding EL spectra at the current density of 40 and 20 mA/cm2, respectively. Copyright from the AIP Publishing LLC.
Fig.4 TEM image of the Au NPs@SiO2 core-shell NPs(A), normalized EL spectra of the PLEDs and the normalized UV-Vis absorption spectra of 8 nm Au NPs and Au NPs@SiO2 dispersed in water(B), schematic of the device structure of the PLEDs(C), the current density-luminance-voltage characteristics(D) and luminous efficiency characteristics of devices with and without Au NPs@SiO2(E) and luminance-voltage and luminous efficiency-current density characteristics of a device with Au NPs(without the shell)(F)[82] Copyright from the AIP Publishing LLC.
Fig.5 Experimental(A) and theoretical(B) absorbance enhancement factor of the active layer with different amounts of Au NPs and theoretical near field distribution around an Au NP in the active layer(C)[49]Copyright from the Royal Society of Chemistry.
Fig.6 Device structure and the energy level of iPLEDs/Au NPs(A), characteristics of current density vs. applied voltage(B), luminous efficiency vs. current density curves as a function of different electrostatic adsorption time of Au NPs(C) and time-resolved PL spectra detected at the wavelength of 518 nm excited by a 405 nm laser source(D)[45] Inset is PL spectra of P-PPV layer with and without Au NPs(D). The w/o Au NPs represent without Au NPs. Copyright from the American Chemical Society.
Fig.7 Device structures of the OPVs(A), SEM image of the Au NPs(B), current density vs. voltage characteristics(C), recorded under illumination at 100 mW/cm2(AM 1.5 G) of the OPVs prepared with Cs2CO3 layers incorporating various amounts of Au NPs[93]Copyright from the AIP Publishing LLC.
Fig.8 Device structure and schematic of near effect and far-effect working distance(A), PL spectra of MEH-PPV, P-PPV, PFO film(B) and the relationship between Ztheory-PL and ZB or ZLE as a function of distance between Au NPs and fluorescent moleculars(C)[44]In (C), dash line stands for Ztheory-PL, filled rectangle represents for ZLE, empty rectangle stands for ZB. Red, green, blue colors represent MEH-PPV, P-PPV, PFO, respectively. Copyright from the John Wiley and Sons.
Fig.9 Theoretical electric field profile in the PEDOT∶PSS∶Au NPs/P3HT∶PC61BM OPVs(A) and optical density of the PEDOT∶PSS/P3HT∶PC61BM film with or without Au NPs incorporation(B)[53] Copyright from the Royal Society of Chemistry.
Fig.10 Current vs. voltage characteristics of the PDOF/gold NPs nanocomposite devices with different nanoparticle volume fractions(A), schematically illustrated mechanism of the formation of roughened surface(B)[28]Copyright from the American Chemical Society.
Fig.11 Chemical structures of PCDTBT and PC70BM, a schematic of the device structure and SEM images of synthesized Ag NPs of several diameters using polyol process(A) and UPS spectra of the plain OPVs(a) and the OPVs with Ag clusters(b)(B)[34] Copyright from the John Wiley and Sons.
Fig.12 Architechture and energy levels of the PLEDs(A) and luminous efficiency vs. current density curves as a function of Au NPs thickness(B)[46]The w/o Au NPs represent without Au NPs. Copyright from the Royal Society of Chemistry.
Fig.13 Current density vs. voltage curves of OPVs with various ZnO overlayer on top of Au NPs under simulated 1 sun AM1.5 illumination[103]Control(no Au NPs, black circle), Au NPs without ZnO overlayer(red square), 4 nm ZnO overlayer(orange cross), 8 nm ZnO overlayer(green triangle), 16 nm ZnO overlayer(blue inverse triangle), 24 nm ZnO overlayer(magenta diamond). Inset: schematic representation of the device structures. Copyright from the American Chemical Society.
Fig.14 Schematics of ITO-free PLEDs based on super yellow with an Ag NPs containing PEDOT∶PSS electrode(A), photoluminescence spectra of super yellow films on NMP∶PH500 and Ag@NMP∶PH500 electrodes(B), light-emitting characteristics of current density vs. applied voltage(C) and power efficiency vs. voltage curves(D)[39]Copyright from the Royal Society of Chemistry.
Fig.15 Chemical structures of PBDTTT-C-T and PC71BM(left), schematic of the device structure: NP device(top), grating device(bottom), and dual metallic structural device(right)(A), current density vs. voltage characteristics of devices with different structures measured under AM 1.5 illumination at 100 mW/cm2(B), the extracted absorption of the control flat OPVs and NPs+G750 OPVs, and the absorption enhancement of NPs50+G750, G750, and NPs 50 compared to the control flat OPVs(C) and the current density vs. voltage characteristics of hole-only device of ITO/PEDOT∶PSS/active layer/Au(D) and electron-only device with structure of ITO/TiO2/active layer/Ca/Al(E)[51]The 1-R-T resprents the 1-differse reflection(R)-diffuse transmission(T). Copyright from the John Wiley and Sons.
Geometry | OLEDs emissive layer | Luminous efficiency/ (cd·A-1) | Enhancement ratio (%) | Mechanism | Ref. | |
---|---|---|---|---|---|---|
Initial | Final | |||||
NPs dispersed into the anode | ||||||
CD-Ag NPs | Super yellow | 11.65 | 27.16 | 133 | LSPR, “hot spot” | [37] |
Au NPs | MEH-PPV | 1.40 | 1.61 | 15 | LSPR | [38] |
Cu NPs | 1.74 | 24 | ||||
Au-Cu NPs | 1.57 | 12 | ||||
Au NPs | Alq3 | 1.04 | 1.28 | 25 | LSPR | [54] |
Au NPs@PS | PVK∶PBD∶Ir(ppy)3 | 20.3 | 28.9 | 42 | LSPR | [63] |
Au NPs | CBP∶Ir(ppy)3 | 11.0 | 27.7 | 150 | LSPR | [75] |
Pt3Co NPs | CBP∶Ir(ppy)3 | 44.2 | 76.4 | 73 | Electrical | [95] |
Au NPs | Alq3 | 3.4 | 5.7 | 68 | LSPR, electrical | [55] |
Pt3Co NPs | Alq3 | 13.0 | 29.3 | 125 | LSPR, scattering | [56] |
Au NPs | MEH-PPV | 0.51 | 0.68 | 33 | Far-field | [43] |
P-PPV | 11.3 | 14.9 | 32 | [44] | ||
PFO | 1.89 | 2.58 | 37 | |||
NPs dispersed into the emissive layer | ||||||
Au NPs | PVK∶PBD∶Ir(mppy)3 | 27 | 36 | 33 | LSPR | [30] |
Au NPs@SiO2 | Green-B | 6.3 | 10.0 | 60 | LSPR | [82] |
NPs dispersed into the cathode | ||||||
Au NPs | P-PPV | 4.4 | 10.5 | 140 | LSPR | [45] |
Au NPs | P-PPV | 15.4 | 18.3 | 19 | Electrical | [46] |
Au NPs | CBP∶Ir(ppy)3 | 17.6 | 18.0 | 2 | Electrical | [90] |
Table 1 Summary of device characteristics of OLEDs employing NPs with different nanostructures and locations
Geometry | OLEDs emissive layer | Luminous efficiency/ (cd·A-1) | Enhancement ratio (%) | Mechanism | Ref. | |
---|---|---|---|---|---|---|
Initial | Final | |||||
NPs dispersed into the anode | ||||||
CD-Ag NPs | Super yellow | 11.65 | 27.16 | 133 | LSPR, “hot spot” | [37] |
Au NPs | MEH-PPV | 1.40 | 1.61 | 15 | LSPR | [38] |
Cu NPs | 1.74 | 24 | ||||
Au-Cu NPs | 1.57 | 12 | ||||
Au NPs | Alq3 | 1.04 | 1.28 | 25 | LSPR | [54] |
Au NPs@PS | PVK∶PBD∶Ir(ppy)3 | 20.3 | 28.9 | 42 | LSPR | [63] |
Au NPs | CBP∶Ir(ppy)3 | 11.0 | 27.7 | 150 | LSPR | [75] |
Pt3Co NPs | CBP∶Ir(ppy)3 | 44.2 | 76.4 | 73 | Electrical | [95] |
Au NPs | Alq3 | 3.4 | 5.7 | 68 | LSPR, electrical | [55] |
Pt3Co NPs | Alq3 | 13.0 | 29.3 | 125 | LSPR, scattering | [56] |
Au NPs | MEH-PPV | 0.51 | 0.68 | 33 | Far-field | [43] |
P-PPV | 11.3 | 14.9 | 32 | [44] | ||
PFO | 1.89 | 2.58 | 37 | |||
NPs dispersed into the emissive layer | ||||||
Au NPs | PVK∶PBD∶Ir(mppy)3 | 27 | 36 | 33 | LSPR | [30] |
Au NPs@SiO2 | Green-B | 6.3 | 10.0 | 60 | LSPR | [82] |
NPs dispersed into the cathode | ||||||
Au NPs | P-PPV | 4.4 | 10.5 | 140 | LSPR | [45] |
Au NPs | P-PPV | 15.4 | 18.3 | 19 | Electrical | [46] |
Au NPs | CBP∶Ir(ppy)3 | 17.6 | 18.0 | 2 | Electrical | [90] |
Geometry | OPVs active layer | PCE(%) | Enhancement ratio (%) | Mechanism | Ref. | |
---|---|---|---|---|---|---|
Initial | Final | |||||
NPs dispersed into the anode | ||||||
Au NPs | P3HT∶PCBM | 3.48 | 4.19 | 20 | LSPR | [33] |
Au NPs | P3HT∶PCBM | 2.37 | 2.91 | 23 | LSPR | [40] |
Au NPs | MEH-PPV∶PCBM | 1.99 | 2.36 | 19 | LSPR | [41] |
CD-Ag NPs | PTB7∶PC71BM | 7.53 | 8.31 | 10 | LSPR, “hot spot” | [37] |
Au NPs | Tandem P3HT∶IPCA, PSBTBT∶PC70BM | 5.22 | 6.24 | 20 | Strong local near-field | [78] |
Au NPs | P3HT∶PCBM | 3.61 | 4.32 | 20 | LSPR | [57] |
Au NPs | P3HT∶PCBM | 3.10 | 3.51 | 13 | Hole collection | [53] |
Ag NPs | PTBT∶PC61BM | 3.27 | 4.31 | 32 | LSPR, Electrical | [39] |
NPs dispersed into the active layer | ||||||
Ag NWs | P3HT∶PCBM | 3.16 | 3.72 | 18 | LSPR | [47] |
Au NPs | PFSDCN∶PCBM | 1.64 | 2.17 | 32 | LSPR | [49] |
Ag NPs+Ag nanoparims | P3HT∶PCBM | 3.60 | 4.30 | 19 | LSPR | [50] |
Ag NPs | PCBTBT∶PC70BM | 6.30 | 7.10 | 13 | Electrical | [34] |
Au NPs | P3OT-C60 | 1.27 | 1.90 | 50 | Electrical | [102] |
Ag NPs+Ag Grating | PBDTTT-C-T∶PC71BM | 7.59 | 8.79 | 16 | LSPR, Electrical | [51] |
NPs dispersed into the cathode | ||||||
Au NPs | PIDT-PhanQ∶PC71BM | 6.65 | 7.50 | 13 | LSPR | [36] |
Au NPs | P3HT∶PCBM | 3.12 | 3.54 | 13 | LSPR | [93] |
Au NPs | P3HT∶PCBM | 2.25 | 2.35 | 5 | Electrical | [103] |
Table 2 Summary of device characteristics of OPVs employing NPs with different nanostructures and locations
Geometry | OPVs active layer | PCE(%) | Enhancement ratio (%) | Mechanism | Ref. | |
---|---|---|---|---|---|---|
Initial | Final | |||||
NPs dispersed into the anode | ||||||
Au NPs | P3HT∶PCBM | 3.48 | 4.19 | 20 | LSPR | [33] |
Au NPs | P3HT∶PCBM | 2.37 | 2.91 | 23 | LSPR | [40] |
Au NPs | MEH-PPV∶PCBM | 1.99 | 2.36 | 19 | LSPR | [41] |
CD-Ag NPs | PTB7∶PC71BM | 7.53 | 8.31 | 10 | LSPR, “hot spot” | [37] |
Au NPs | Tandem P3HT∶IPCA, PSBTBT∶PC70BM | 5.22 | 6.24 | 20 | Strong local near-field | [78] |
Au NPs | P3HT∶PCBM | 3.61 | 4.32 | 20 | LSPR | [57] |
Au NPs | P3HT∶PCBM | 3.10 | 3.51 | 13 | Hole collection | [53] |
Ag NPs | PTBT∶PC61BM | 3.27 | 4.31 | 32 | LSPR, Electrical | [39] |
NPs dispersed into the active layer | ||||||
Ag NWs | P3HT∶PCBM | 3.16 | 3.72 | 18 | LSPR | [47] |
Au NPs | PFSDCN∶PCBM | 1.64 | 2.17 | 32 | LSPR | [49] |
Ag NPs+Ag nanoparims | P3HT∶PCBM | 3.60 | 4.30 | 19 | LSPR | [50] |
Ag NPs | PCBTBT∶PC70BM | 6.30 | 7.10 | 13 | Electrical | [34] |
Au NPs | P3OT-C60 | 1.27 | 1.90 | 50 | Electrical | [102] |
Ag NPs+Ag Grating | PBDTTT-C-T∶PC71BM | 7.59 | 8.79 | 16 | LSPR, Electrical | [51] |
NPs dispersed into the cathode | ||||||
Au NPs | PIDT-PhanQ∶PC71BM | 6.65 | 7.50 | 13 | LSPR | [36] |
Au NPs | P3HT∶PCBM | 3.12 | 3.54 | 13 | LSPR | [93] |
Au NPs | P3HT∶PCBM | 2.25 | 2.35 | 5 | Electrical | [103] |
[1] | Tang C. W., Vanslyke S. A., Appl. Phys. Lett., 1987, 51(12), 913—915 |
[2] | Pan Y. Y., Li W. J., Zhang S. T., Yao L., Gu C., Xu H., Yang B., Ma Y. G., Adv. Opt. Mater., 2014, 2(6), 510—515 |
[3] | Li X. C., Sun J. Z., Ma Y. G., Shen J. C., Chem. J. Chinese Universities, 1999, 20(2), 309—314 |
(李晓常, 孙景志, 马於光, 沈家骢. 高等学校化学学报,1999, 20(2), 309—314) | |
[4] | Li W. J., Gao Z., Wang Z. M., Yang B., Lu P., Ma Y. G., Chem. J. Chinese Universities, 2014, 35(9), 1849—1858 |
(李维军, 高曌, 王志明, 杨兵, 路萍, 马於光. 高等学校化学学报, 35(9), 1849—1858) | |
[5] | Li J. K., Qi Z. N., Wang F. S., Chem. J. Chinese Universities, 1996, 17(12), 1952—1958 |
(李建科, 漆宗能, 王佛松. 高等学校化学学报, 1958, 17(12), 1952—1958) | |
[6] | Chen J. S., Shi C. S., Fu Q., Zhao F. C., Hu Y., Feng Y. L., Ma D. G., J. Mater. Chem., 2012, 22(11), 5164—5170 |
[7] | Wang Q., Ma D. G., Chem. Soc. Rev., 2010, 39(5), 2387—2398 |
[8] | Tao Y. T., Yang C. L., Qin J. G., Chem. Soc. Rev., 2011, 40(5), 2943—2970 |
[9] | Fan C., Yang C. L., Chem. Soc. Rev., 2014, 43(17), 6439—6469 |
[10] | He Z. C., Zhong C. M., Su S. J., Xu M., Wu H. B., Cao Y., Nat. Photonics, 2012, 6(9), 591—595 |
[11] | Nian L., Zhang W. Q., Zhu N., Liu L. L., Xie Z. Q., Wu H. B., Wurthner F., Ma Y. G., J. Am. Chem. Soc., 2015, 137(22), 6995—6998 |
[12] | Zuo L. J., Chueh C. C., Xu Y. X., Chen K. S., Zang Y., Li C. Z., Chen H. Z., Jen A. K. Y., Adv. Mater., 2014, 26(39), 6778—6784 |
[13] | Gao Y., Yip H. L., Chen K. S., O’Malley K. M., Acton O., Sun Y., Ting G., Chen H. Z., Jen A. K. Y., Adv. Mater., 2011, 23(16), 1903—1908 |
[14] | Li Y. F., Acc Chem. Res., 2012, 45(5), 723—733 |
[15] | Gu C., Chen Y. C., Zhang Z. B., Xue S. F., Sun S. H., Zhang K., Zhong C. M., Zhang H. H., Pan Y. Y., Lü Y., Yang Y. Q., Li F. H., Zhang S. B., Huang F., Ma Y. G., Adv. Mater., 2013, 25(25), 3443—3448 |
[16] | Yu H. Z., Peng J. B., Chem. J. Chinese Universities, 2007, 28(12), 2359—2363 |
(於黄忠, 彭俊彪. 高等学校化学学报, 2007, 28(12), 2359—2363) | |
[17] | Wen Y. G., Liu Y. Q., Guo Y. L., Yu G., Hu W. P., Chem. Rev., 2011, 111(5), 3358—3406 |
[18] | Deng J., Tang J., Xu Y. X., Liu L. Q., Wang Y., Xie Z. Q., Ma Y. G., Phys. Chem. Chem. Phys., 2015, 17(5), 3421—3425 |
[19] | Zhou Y., Wang L., Wang J., Pei J., Cao Y., Adv. Mater., 2008, 20(19), 3745—3749 |
[20] | Tian C. G., Jiang D. Y., Li B. Z., Lin J. Q., Zhao Y. J., Yuan W. X., Zhao J. X., Liang Q. C., Gao S., Hou J. H., Qin J. M., ACS Appl. Mater. Interfaces, 2014, 6(3), 2162—2166 |
[21] | Rycenga M., Cobley C. M., Zeng J., Li W. Y., Moran C. H., Zhang Q., Qin D., Xia Y. N., Chem. Rev., 2011, 111(6), 3669—3712 |
[22] | Shenashen M. A., Safty S. A. E., EIshehy E. A., Part. Part. Syst. Charact., 2014, 31(3), 293—316 |
[23] | Jeong S. H., Choi H., Kim J. Y., Lee T. W., Part. Part. Syst. Charact., 2015, 32(2), 164—175 |
[24] | Choy W. C. H., Chem. Commun., 2014, 50(81), 11984—11993 |
[25] | Stratakis E., Kymakis E., Mater. Today, 2013, 16(4), 133—146 |
[26] | Gan Q. Q., Bartoli F. J., Kafafi Z. H., Adv. Mater., 2013, 25(17), 2385—2396 |
[27] | Chou C. H., Chen F. C., Nanoscale,2014, 6(15), 8444—8458 |
[28] | Park J. H., Lim Y. T., Park O. O., Kim J. K., Yu J. W., Kim Y. C., Chem. Mater., 2004, 16(4), 688—692 |
[29] | Park J. H., Lim Y. T., Park O. O., Kim Y. C., Macromol. Rapid. Commun., 2003, 24(4), 331—334 |
[30] | Choulis S. A., Mathai M. K., Choong V. E., Appl. Phys. Lett., 2006, 88(21), 213503—213505 |
[31] | Shang L., Chen H. J., Dong S. J., J. Phys. Chem. C, 2007, 111(29), 10780—10784 |
[32] | Kinkhabwala A., Yu Z. F., Fan S. H., Avlasevich Y., Mullen K., Moerner W. E., Nat. Photonics, 2009, 3(11), 654—657 |
[33] | Chen F. C., Wu J. L., Lee C. L., Hong Y., Kuo C. H., Huang M. H., Appl. Phys. Lett., 2009, 95(1), 013305—013307 |
[34] | Wang D. H., Park K. H., Seo J. H., Seifter J., Jeon J. H., Kim J. K., Park J. H., Park O. O., Heeger A. J., Adv. Energy. Mater., 2011, 1(5), 766—770 |
[35] | Fu W. F., Chen X. Q., Yang X., Wang L., Shi Y., Shi M. M., Li H. Y., Jen A. K. Y., Chen J. W., Cao Y., Chen H. Z., Phys. Chem. Chem. Phys., 2013, 15(40), 17105—17111 |
[36] | Yang X., Chueh C. C., Li C. Z., Yip H. L., Yin P. P., Chen H. Z., Chen W. C., Jen A. K. Y., Adv. Energy. Mater., 2013, 3(5), 666—673 |
[37] | Choi H., Ko S. J., Choi Y., Joo P., Kim T., Lee B. R., Jung J. W., Choi H. J., Cha M., Jeong J. R., Hwang I. W., Song M. H., Kim B. S., Kim J. Y., Nat. Photonics, 2013, 7(9), 732—738 |
[38] | Heo M., Cho H., Jung J. W., Jeong J. R., Park S., Kim J. Y., Adv. Mater., 2011, 23(47), 5689—5693 |
[39] | Ko S. J., Choi H., Lee W., Kim T., Lee B. R., Jung J. W., Jeong J. R., Song M. H., Lee J. C., Woo H. Y., Kim J. Y., Energy Environ. Sci., 2013, 6(6), 1949—1955 |
[40] | Chen X. Q., Zuo L. J., Fu W. F., Yan Q. X., Fan C. C., Chen H. Z., Sol. Energy Mater. & Sol. Cells,2013, 111(1), 1—8 |
[41] | Qiao L. F., Wang D., Zuo L. J., Ye Y. Q., Qian J., Chen H. Z., He S. L., Appl. Energy, 2011, 88(3), 848—852 |
[42] | Yang X., Liu W. Q., Xiong M., Zhang Y. Y., Liang T., Yang J. T., Xu M. S., Ye J., Chen H. Z., J. Mater. Chem. A, 2014, 2(36), 14798—14806 |
[43] | Wu X. Y., Liu L. L., Yu T. C., Yu L., Xie Z. Q., Mo Y. Q., Xu S. P., Ma Y. G., J. Mater. Chem. C, 2013, 1(42), 7020—7025 |
[44] | Wu X. Y., Liu L. L., Deng Z. C., Nian L., Zhang W. Z., Hu D. H., Xie Z. Q., Mo Y. Q., Ma Y. G., Part. Part. Syst. Charact., 2015, 32(6), 686—692 |
[45] | Wu X. Y., Liu L. L., Choy W. C. H., Yu T. C., Cai P., Gu Y. J., Zhang Y. N., Du L. Y., Mo Y. Q., Xu S. P., Ma Y. G., ACS Appl. Mater. Interfaces, 2014, 6(14), 11001—11006 |
[46] | Wu X. Y., Yang Y. Z., Chi X., Han T., Hanif M., Liu L. L., Xie Z. Q., Chen X. D., Ma Y. G., J. Mater. Chem. C, 2015, 3(38), 9928—9932 |
[47] | Yang Y. Z., Lin X. F., Qing J., Zhong Z. F., Ou J. M., Hu C. L., Chen X. D., Zhou X., Chen Y. J., Appl. Phys. Lett., 2014, 104(12), 123302—123305 |
[48] | Yang Y. Z., Qing J., Ou J. M., Lin X. F., Yuan Z. K., Yu D. S., Zhou X., Chen X. D., Sol. Energy, 2015, 122(3), 231—238 |
[49] | Wang C. C. D., Choy W. C. H., Duan C. H., Fung D. D. S., Sha W. E. I., Xie F. X., Huang F., Cao Y., J. Mater. Chem., 2012, 22(3), 1206—1211 |
[50] | Li X. H., Choy W. C. H., Lu H. F., Sha W. E. I., Ho A. H. P., Adv. Funct. Mater., 2013, 23(21), 2728—2735 |
[51] | Li X. H., Choy W. C. H., Huo L. J., Xie F. X., Sha W. E. I., Ding B. F., Guo X., Li Y. F., Hou J. H., You B. J., Yang Y., Adv. Mater., 2012, 24(22), 3046—3052 |
[52] | Sha W. E. I., Choy W. C. H., Liu Y. G., Chew W. C., Appl. Phys. Lett., 2011, 99(11), 113304—113306 |
[53] | Fung D. D. S., Qiao L. F., Choy W. C. H., Wang C. D., Sha W. E. I., Xie F. X., He S. L., J. Mater. Chem., 2011, 21(41), 16349—16356 |
[54] | Xiao Y., Yang J. P., Cheng P. P., Zhu J. J., Xu Z. Q., Deng Y. H., Lee S. T., Li Y. Q., Tang J. X., Appl. Phys. Lett., 2012, 100(1), 013308—013311 |
[55] | Zhang D. D., Wang R., Ma Y. Y., Wei H. X., Ou Q. D., Wang Q. K., Zhou L., Lee S. T., Li Y. Q., Tang J. X., Org. Electron, 2014, 15(4), 961—967 |
[56] | Gu Y., Zhang D. D., Ou Q. D., Deng Y. H., Zhu J. J., Cheng L., Liu Z., Lee S. T., Li Y. Q., Tang J. X., J. Mater. Chem. C, 2013, 1(28), 4319—4326 |
[57] | Cheng P. P., Ma G. F., Li J., Xiao Y., Xu Z. Q., Fan G. Q., Li Y. Q., Lee S. T., Tang J. X., J. Mater. Chem., 2012, 22(42), 22781—22787 |
[58] | Cheng P. P., Zhou L. L., Li J. A., Li Y. Q., Lee S. T., Tang J. X., Org. Electron, 2013, 14(9), 2158—2163 |
[59] | Fan G. Q., Zhuo Q. Q., Zhu J. J., Xu Z. Q., Cheng P. P., Li Y. Q., Sun X. H., Lee S. T., Tang J. X., J. Mater. Chem., 2012, 22(31), 15614—15619 |
[60] | Gu M., Li X. P., Cao Y. Y., Light: Sci. Appl., 2014, 3, DOI: 10.1038/lsa.2014.58 |
[61] | Su Y. H., Ke Y. F., Cai S. L., Yao Q. Y., Light: Sci. Appl., 2012, 3DOI: 10.1038/lsa.2012.14 |
[62] | Park B., Yun S. H., Cho C. Y., Kim Y. C., Shin J. C., Jeon H. G., Huh Y. H., Hwang I., Baik K. Y., Lee Y. I., Uhm H. S., Cho G. S., Choi E. H., Light: Sci. Appl., 2014, 3DOI: 10.1038/lsa.2012.103 |
[63] | Kim T., Kang H., Jeong S., Kang D. J., Lee C., Lee C. H., Seo M. K., Lee J. Y., Kim B. J., ACS Appl. Mater. Interfaces, 2014, 6(19), 16956—16965 |
[64] | Park H. J., Vak D., Noh Y. Y., Lim B., Kim D. Y., Appl. Phys. Lett., 2007, 90(16), 161107—161109 |
[65] | Kummerlen J., Letiner A., Brunner H., Aussenegg F. R., Wokaun A., Mol. Phys., 1993, 80(5), 1031—1046 |
[66] | Geddes C. D., Lakowicz J. R., J. Fluoresc., 2002, 12(2), 121—129 |
[67] | Liu L. L., Xie Z. Q., Ma Y. G., Chinese. Sci. Bull., 2013, 58(22), 2741—2746 |
[68] | Xu M. J., Chen T. R., Li B., Chem. J. Chinese Universities, 2012, 33(11), 2368—2372 |
(许苗军, 陈天然, 李斌. 高等学校化学学报, 2012,33(11), 2368—2372) | |
[69] | Shi Y. L., Zhang X. G., Li H. L., Chem. J. Chinese Universities, 2001, 22(5), 821—823 |
(史彦莉, 张校刚, 力虎林. 高等学校化学学报, 2001, 22(5), 821—823) | |
[70] | Guo C.F., Sun T. Y., Cao F., Liu Q., Ren Z. F., Light:Sci. Appl., 2014, 3, DOI: 10.1038/lsa.2014.42 |
[71] | Chen X., Jia B.H., Zhang Y. N., Gu M., Light:Sci. Appl., 2013, 2, DOI: 10.1038/lsa.2013.48 |
[72] | Atwater H. A., Polman A., Nat. Mater., 2010, 9(3), 205—213 |
[73] | Zhang W., Chen Y., Hu C., Zhang Y., Chen X., Zhang M. Q., J. Mater. Chem. C, 2013, 1(6), 1265—1271 |
[74] | Beck F. J., Verhagen E., Mokkapati S., Polman A., Catchpole K. R., Opt. Express, 2011, 19(S2), 146—156 |
[75] | Lee Y. H., Kim D. H., Yoo K. H., Kim T. W., Appl. Phys. Lett., 2014, 105(18), 183303—183307 |
[76] | Kim D. H., Kim T. W., Opt. Express, 2015, 23(9), 11211—11220 |
[77] | Ji W. Y., Zhang L. T., Xie W. F., Opt. Lett., 2012, 37(11), 2019—2021 |
[78] | Yang J., You J. B., Chen C. C., Hsu W. C., Tan H. R., Zhang X. W., Hong Z. R., Yang Y., ACS Nano, 2011, 5(8), 6210—6217 |
[79] | Lu L. Y., Luo Z. Q., Xu T., Yu L. P., Nano Lett., 2013, 13(1), 59—64 |
[80] | Su Z. S., Wang L. D., Li Y. T., Zhang G., Zhao H. F., Yang H. G., Ma Y. J., Chu B., Li W. L., ACS Appl. Mater. Interfaces, 2013, 5(24), 12847—12853 |
[81] | Baek S. W., Park G., Noh J., Cho C., Lee C. H., Seo M. K., Song H., Lee J. Y., ACS Nano, 2014, 8(4), 3302—3312 |
[82] | Peng J. H., Xu X. J., Tian Y., Wang J. S., Tang F., Li L. D., Appl. Phys. Lett., 2014, 105(17), 173301—173305 |
[83] | Liu F., Nunzi J. M., Appl. Phys. Lett., 2011, 99(12), 123302—123304 |
[84] | Kochergin V., Neely L., Jao C. Y., Robinson H. D., Appl. Phys. Lett., 2011, 98(13), 133305—133307 |
[85] | He Y. Y., Liu C. Y., Li J. F., Zhang X. Y., Li Z. Q., Shen L., Guo W. B., Ruan S. P., ACS Appl. Mater. Interfaces, 2015, 7(29), 15848—15854 |
[86] | Chuang M. K., Chen F. C., ACS Appl. Mater. Interfaces, 2015, 7(13), 7397—7405 |
[87] | Yang K. Y., Choi K. C., Ahn C. W., Appl. Phys. Lett., 2009, 94(17), 173301—173303 |
[88] | Park S., Kwon O., Yang J., Lee C., Whang K. W., SID Int. Symp. Dig. Technol. Pap,2013, 44(1), 1428—1430 |
[89] | Ma X., Benavides J., Haughn C. R., Xu F., Doty M. F., Cloutier S. G., Org. Electron, 2013, 14(7), 1916—1923 |
[90] | Xu K., Li Y., Zhang W., Zhang L. T., Xie W. F., Curr. Appl. Phys., 2014, 14(1), 53—56 |
[91] | Sha W. E. I., Li X. H., Choy W. C. H., Sci. Rep., 2014, 4(1), 6236—6245 |
[92] | Sha W. E. I., Zhu H. L., Chen L., Chew W. C., Choy W. C. H., Sci. Rep., 2015, 5(2), 8525—8532 |
[93] | Kao C. S., Chen F. C., Liao C. W., Huang M. H., Hsu C. S., Appl. Phys. Lett., 2012, 101(19), 193902—193905 |
[94] | Sung H., Lee J., Han K., Lee J. K., Sung J., Kim D., Choi M., Kim C., Org. Electron, 2014, 15(2), 491—499 |
[95] | Ji W. Y., Wang J., Zeng Q. H., Su Z. S., Sun Z. C., Rsc. Adv., 2013, 3(34), 14616—14624 |
[96] | Wang D., Yasui K., Ozawa M., Odoi K., Shimamura S., Fujita K., Appl. Phys. Lett., 2013, 102(2), 023302—023304 |
[97] | Jung M., Yoon D. M., Kim M., Kim C., Lee T., Kim J. H., Lee S., Lim S. H., Woo D., Appl. Phys. Lett., 2014, 105(1), 013306—013310 |
[98] | Kim S. H., Bae T. S., Heo W., Joo T., Song K. D., Park H. G., Ryu S. Y., ACS Appl. Mater. Interfaces, 2015, 7(27), 15031—15041 |
[99] | Jesuraj P. J., Jeganathan K., Rsc. Adv., 2015, 5(1), 684—689 |
[100] | Kim J. Y., Hwang C. R., Jo S. H., Jung W. G., Appl. Phys. Lett., 2011, 99(23), 233304—233306 |
[101] | Moon J. M., Bae J. H., Jeong J. A., Jeong S. W., Park N. J., Kim H. K., Appl. Phys. Lett., 2011, 90(16), 163516—163518 |
[102] | Kim K., Carroll D. L., Appl. Phys. Lett., 2005, 87(20), 203113—203115 |
[103] | Wang J., Lee Y. J., Chadha A. S., Yi J., Jespersen M. L., Kelley J. J., Nguyen H. M., Nimmo M., Malko A. V., Vaia R. A., Zhou W. D., Hsu J. W. P., J. Phys. Chem. C, 2013, 117(1), 85—91 |
[104] | Chen S. H., Yu S. T., Liou Y. Y., Yu C. F., Lin C. F., Kao P. C., J. Electrochem. Soc., 2011, 158(3), 53—57 |
[105] | Chen S. H., Chan S. C., Appl. Phys. Express, 2012, 5(6), 062001—062003 |
[106] | Chen S. H., Jhong J. Y., Opt. Express, 2011, 19(18), 16843—16850 |
[107] | Spyropoulos G. D., Stylianakis M. M., Stratakis E., Kymakis E., Appl. Phys. Lett., 2012, 100(21), 213904—213908 |
[1] | ZHOU Yonghui, HUANG Rujun, YAN Jianyang, LI Yajun, QIU Huanhuan, YANG Jinxuan, ZHENG Youxuan. Synthesis and Electroluminescence Properties of Two Iridium(Ⅲ) Complexes with Nitrogen Heterocycle Structures [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210415. |
[2] | WANG Yawen, LI Dong, LIANG Wenkai, SUN Yinghui, JIANG Lin. Multiplex Structures of Plasmonic Metal Nanoparticles and Their Applications [J]. Chem. J. Chinese Universities, 2021, 42(4): 1213. |
[3] | PAN Jing, XU Minmin, YUAN Yaxian, YAO Jianlin. Rapid Detection of Banned Dyes in Textiles Based on Surface-enhanced Raman Spectroscopy [J]. Chem. J. Chinese Universities, 2021, 42(12): 3716. |
[4] | LIU Yulong, LU Fang, LU Ping. Design, Synthesis and Electroluminescence of Organic Conjugated Compounds Based on Pyrene-imidazole† [J]. Chem. J. Chinese Universities, 2017, 38(4): 583. |
[5] | CHEN Dong, ZHANG Xueqiang, ZHANG Jingying, WANG Yue. Synthesis, Characterizations and Electroluminescent Properties of Luminescent Diphenylamino Substituted Acridine Derivatives† [J]. Chem. J. Chinese Universities, 2015, 36(3): 484. |
[6] | HAN Juan, SHEN Lin, FANG Wei-Hai. Calculations of Energy Transfer Rate Based on the Electronic Structure Theory [J]. Chem. J. Chinese Universities, 2012, 33(10): 2275. |
[7] | SUN Yi-Fu, YE Ling, YE Kai-Qi. Electroluminescent Property of a Beryllium Metal-chelate Complex Used as the Electron-transporting Host Material [J]. Chem. J. Chinese Universities, 2012, 33(08): 1714. |
[8] | YANG Gui-Xia, HUANG Zong-Hao*, YANG Pei-Pei, XIN Yi, JIANG Zi-Jiang, ....... Theoretical Studies on the Structural and Optoelectronic Properties of F-Substituted Silole Derivatives [J]. Chem. J. Chinese Universities, 2009, 30(11): 2274. |
[9] | DING Hong-Liu, ZHAO Ting, SHI Guo-Yue, JIN Li-Tong*. Preparation and Electroluminescence Property of a Non-doping OLED Based on Zn(Q-Ph)2 and DCJTB [J]. Chem. J. Chinese Universities, 2008, 29(8): 1598. |
[10] | YUAN Ji-Bing, LI Jia-Hang, Liang Wan-li, Su Shu-jiang, YAO Jun-Hua, GONG Meng-Lian . Synthesis and Electroluminescence of a Novel Eu(Ⅲ) Ternary Complex [J]. Chem. J. Chinese Universities, 2005, 26(10): 1787. |
[11] | LI Xu-Hua, YUAN Qiao-Long, WANG De-Ning, CAO Zhuang-Qi, SHEN Qi-Shun. Resonance Enhancement of Electro-optical Effect by Second-order Nonlinear Optical Polyurethane [J]. Chem. J. Chinese Universities, 2003, 24(9): 1683. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||