$3NaBH_4/ErF_3$ 复合储氢材料的制备及 吸放氢特性

李龙津¹, 邹建新¹, 曾小勤^{1,2}, 丁文江^{1,2}

(1. 上海交通大学材料科学与工程学院轻合金精密成型国家工程中心,

2. 金属基复合材料国家重点实验室,上海 200240)

摘要 采用高能球磨法制备了 $3NaBH_4/ErF_3$ 复合储氢材料,并研究了其相结构和储氢性能. X 射线衍射 (XRD)显示, NaBH₄和 ErF₃ 在球磨过程中未发生反应;同步热分析(TG-DSC)测试结果表明, $3NaBH_4/ErF_3$ 体系在 $420 \, \mathbb{C}$ 开始放氢,比相同测试条件下纯 $NaBH_4$ 的放氢温度降低了约 $100 \, \mathbb{C}$,放氢量为 3.06% (质量分数). 压力-成分-温度(Pressure-Composition-Temperature, PCT)性能测试结果显示, $3NaBH_4/ErF_3$ 复合储氢材料在较低的温度($355 \, \sim 413 \, \mathbb{C}$)及平台氢压($<1 \, MPa$)下即拥有良好的可逆吸放氢性能,最高可逆吸氢量可 达到 2.78% (质量分数),吸氢后体系重新生成了 $NaBH_4$ 相. 计算得吸氢焓变仅为- $36.8 \, kJ/mol \, H_2$;而放氢 焓变为- $180.8 \, kJ/mol \, H_2$. $NaBH_4$ 在 ErF_3 的作用下提高了热动力学性能,并实现了可逆吸放氢. 关键词 储氢材料;稀土;硼氢化物;可逆吸放氢

中图分类号 0613.2; TB321 文献标识码 A doi: 10.7503/cjcu20111074

氢能具有高效、无污染和可再生等优点,被认为是最有发展潜力的清洁能源.但氢气存在易燃、 易爆、易扩散及常温常压下体积能量密度低等问题,因此,氢能的规模化应用必须解决氢的制取、存 储和应用三大关键技术,而缺乏安全有效的储氢技术严重制约了氢能应用的快速发展^[1-3].因此,发 展高能量密度、高效且安全的储氢技术是解决问题的关键.目前储氢技术主要分为气态储氢、液态储 氢和固态储氢 3 种,其中固态储氢^[4]具有能量密度大和安全性能高等优势,最具发展潜力.传统的金 属氢化物材料(如 AB, AB₂ 和 AB₅ 型合金)虽具有高的体积储氢密度,但温和条件下的有效储氢容量 多低于 3%(质量分数),难以满足移动式氢源等能量转换的需求.近年来,硼氢化物作为一种高容量 固态储氢材料受到了广泛的关注^[5].其中 NaBH₄ 因具有较高的储氢容量而成为具有应用前景的储氢 和燃料电池电极材料^[6,7].但目前 NaBH₄ 作为储氢材料还存在热稳定性高,需要很高的温度才能分解 放氢及在放氢后无法实现可逆储氢这 2 个严重缺陷.

为了解决以上缺陷,很多科研工作者都在探索改进硼氢化物储氢性能的方法,并取得了一定的成 果.例如添加金属氧化物(如 SiO₂^[8], TiO₂^[9])、金属卤化物(MgCl₂, CaCl₂^[10])、金属氢化物 (MgH₂^[11], CaH₂^[12]等)可在一定程度上改善硼氢化物的储氢性能.通过轻金属硼氢化物与重金属卤化 物的离子交换反应可以制得重金属硼氢化物,其稳定性大大低于轻金属硼氢化物.文献[13,14]通过 NaBH₄和 RECl₃的机械化学反应制备了轻稀土金属硼氢化物 La(BH₄)₃, Ce(BH₄)₃, Pr(BH₄)₃和 Nd(BH₄)₃,反应方程式如下:

 $\operatorname{RECl}_{3} + 3\operatorname{NaBH}_{4} \longrightarrow \operatorname{RE}(\operatorname{BH}_{4})_{3} + 3\operatorname{NaCl}$ (1)

然而由该反应所制得的轻稀土类硼氢化物并不能实现可逆吸放氢. 有关重稀土元素的硼氢化物及重稀 土卤化物与硼氢化物相互作用的研究较少, 而 Er 是其中较为常见的典型重稀土元素. 本文通过高能球 磨制备了 3NaBH₄/ErF₃ 复合材料, 并研究了 ErF₃ 对 NaBH₄ 储氢性能的影响.

收稿日期: 2011-11-15.

基金项目:上海市浦江人才计划(批准号:11PJ1406000)、上海市基础研究重点项目(批准号:10JC1407700)、上海市自然科学基金(批准号:11ZR1417600)及教育部博士学科点基金(批准号:20100073120007)资助.

联系人简介: 邹建新, 男, 博士, 研究员, 主要从事储氢材料和纳米材料研究. E-mail: zoujx@ sjtu. edu. en

1 实验方法

1.1 试剂与仪器

NaBH₄(纯度 95%)和 ErF₃(纯度 99.99%)购自阿拉丁试剂有限公司.QM-3SP2 行星式球磨机(南京大学仪器厂);Lab2000 手套箱(伊特克斯惰性气体系统有限公司);D/max 2550VL/PCX(Cu Kα)X 射线衍射仪(日本理学公司);STA449F3 型热分析仪(德国耐驰公司);Sievert 型 PCT 测试仪(中国科学院上海微系统研究所);Spectrum 100 红外光谱分析仪(美国 Perkin Elmer 公司).

1.2 实验过程

实验采用 NaBH₄ 和 ErF₃ 为原料进行机械球磨.为了防止样品氧化受潮,样品的配制及转移过程 均在手套箱(水分<0.1 mL/m³,氧气<0.1 mL/m³)中进行.取1.194 g NaBH₄, 2.242 g ErF₃, 36.7 g 大 钢球和 69.7 g 小钢球,混合加入高能球磨机中,在1.01×10⁵ Pa Ar 气保护气氛下以 400 r/min 的速度 进行球磨.球磨罐是干净密封的不锈钢罐,球磨过程采用如下制式:转 48 min,停 12 min,共 25 个周 期,实际球磨时间为 20 h.球磨条件见表 1.

Table 1 Ball milling parameters for sample preparation

Sample	$n(\text{NaBH}_4)$: $n(\text{ErF}_3)$	Milling duration/h	Rotating speed∕(r • min ⁻¹)	Big ball to small ball mass ratio	Ball to sample mass ratio
$NaBH_4 + ErF_3$	3:1	20	400	1:2	30:1

用 X 射线衍射仪(XRD)对吸放氢前后的样品进行物相分析,为避免样品与空气接触,吸放氢后的样品在 XRD 测试过程中隔绝空气.利用热分析仪在 1.01×10⁵ Pa Ar 气、100 mL/min 吹扫气、150 mL/min 保护气以及 10 K/min 的升温速率下从 20 ℃升温到 500 ℃进行热重-差热(TG-DSC)综合热性能测试,分析放氢和失重过程.样品的吸放氢性能测试在 PCT 测试仪上进行:首先在手套箱中称取一定质量的样品置于不锈钢反应器中,升温到 450 ℃,打开阀门抽真空 2 ~ 3 h,使其放氢完毕,然后分别在实际平均温度为 355,377,398 和 413 ℃下进行吸放氢循环测试.对原料 NaBH₄ 以及再吸氢后的样品进行 FTIR 测试,样品与 KBr 以约 1:50 的质量比混合均匀,并在 15 MPa 下压制成片,在 450 ~ 4000 cm⁻¹范围内进行测试.

2 结果与讨论

2.1 $3NaBH_4/ErF_3$ 体系的相结构分析

图 1 为 NaBH₄, ErF₃及 3NaBH₄/ErF₃ 球磨样品的 XRD 谱图.可见, 球磨后样品的 XRD 衍射谱仍 然只出现 NaBH₄和 ErF₃ 的衍射峰, 无新相生成, 说明球磨过程未发生化学反应.这与(La, Ce)F₃^[15]

和 TiF₃^[16]与 LiBH₄ 球磨未生成相应的(La, Ce)(BH₄)₃和 Ti(BH₄)₃结果相同. 而采用 LaCl₃或 TiCl₃与 NaBH₄ 球磨则可生成相应 的La(BH₄)₃^[15]或Ti(BH₄)₃^[16],这说明在球 磨条件下氯化物与 NaBH₄ 或 LiBH₄ 的反应 活性比相应的氟化物要高.

对原料 NaBH₄ 和球磨后的 3NaBH₄/ ErF₃ 分别进行了 TG-DSC 同步热分析 (1.01×10⁵ Pa Ar 气气氛).图 2(A)的 DSC 曲线显示, NaBH₄ 在 504 ℃时首先发生熔 化,然后发生分解反应放出氢气,对应的 TG 曲线显示开始失重.由图 2(A)可知,纯 NaBH₄ 在该条件下的起始放氢温度为 517 ℃.图 2(B)为球磨后的 3NaBH₄/ErF₃

Fig. 1 XRD patterns of $\text{NaBH}_4(a)$, $\text{ErF}_3(b)$ and 3NaBH₄/ErF₃ mixture(c)

Fig. 2 TG-DSC curves of NaBH₄(A) and $3NaBH_4/ErF_3(B)$ measured in pure Ar atmosphere at 1.01×10⁵ Pa

样品在相同条件下的 TG-DSC 曲线,可见,样品的起始放氢温度为 420 ℃,比纯 NaBH₄ 降低了约 100 ℃,共失重 3.06%,略低于体系的理论含氢量(3.55%). ErF₃ 对 NaBH₄ 放氢温度降低的效果类似于 (Ce,La)F₃^[15]对 LiBH₄ 放氢温度降低的效果,而 NaBH₄ 的成本更低,因此更具有实用价值.体系放氢 量低于理论值一方面可能是由于 NaBH₄ 在长时间的球磨过程中损失,另一方面可能是由于生成金属 氢化物而未完全放氢.图 2(B)中的 DSC 曲线中只出现 1 个吸热峰,说明体系首次放氢过程基本为一步反应,而单一 NaBH₄ 的分解却是一个多步反应的过程^[17].这说明 NaBH₄ 与 ErF₃ 可能在高温下发生 了反应,而不是 NaBH₄ 先直接分解再与 ErF₃ 反应. Fang 等^[16]发现 3LiBH₄/TiF₃ 体系在球磨条件下不 发生反应,而加热条件下则生成了Ti(BH₄)₃并分解放氢.因此 3NaBH₄/ErF₃ 体系在加热条件下可能 先生成 Er(BH₄)₃,然后迅速分解放氢.

 $3NaBH_4/ErF_3$ 体系在 450 ℃下的首次放氢在 PCT 反应器中进行,直至放氢完毕,所得放氢产物的 XRD 谱图如图 3 所示.结果显示,球磨后样品中 NaBH₄和 ErF₃相完全消失,生成了 NaF, ErH₂和 ErB₄相. Garroni等^[11]在研究 $2NaBH_4/MgH_2$ 以及 Mauron 等^[18]在研究 $6LiBH_4/CeH_2$ 的分解反应时,也 发现分解反应后生成了添加剂对应金属元素的硼化物.添加稀土卤化物时,还会生成稀土氢化物. $3LiBH_4/(Ce, La)(Cl, F)_3^{[15]}体系的分解反应得到的分解产物为(Ce, La)H_2, (Ce, La)B_6 以及 Li(Cl,$ $F). 但是不同稀土元素可能得到不同的稀土硼化物,如 <math>3LiBH_4/GdCl_3$ 分解后得到的是 GdB₄和 GdH₂^[19].

将放氢后的样品在 380 ℃, *P*_{H2}=4 MPa 下进行充氢, 在吸氢阶段结束时立即停止, 得到再吸氢后的产物. 其 XRD 谱图如图 3 谱线 *b* 所示. 可见, 再吸氢后体系生成了 NaBH₄, NaErF₄ 以及少量未知相. 为了证明吸氢后体系中再次生成了 NaBH₄, 对纯 NaBH₄ 和吸氢后的复合体系进行了红外光谱测试, 结果如图 4 所示. 在 NaBH₄ 的红外光谱中, 2225, 2293 和 2387 cm⁻¹处的特征吸收峰为 B—H 键的

Fig. 3 XRD patterns of 3NaBH₄/ErF₃ after first dehydrogenation(*a*) and rehydrogenation(*b*)

3NaBH₄/ErF₃ after rehydrogenation(b)

伸缩振动吸收峰,1126 cm⁻¹处为 B—H 键的弯曲振动吸收峰^[15].相应地,再吸氢后样品的 FTIR 谱(图 4 谱线 b)中在1128,2220,2287 和2388 cm⁻¹处出现了吸收峰,说明氢化产物中含有 BH₄ 基团,也证实了产物中有 NaBH₄ 生成.样品在 660,1640 和 3400 cm⁻¹附近的吸收峰分别是水分子的摇摆振动、变角振动和伸缩振动的吸收峰,可能是样品在测试过程中吸潮造成的^[20]. Gosalawit-Utke 等^[20]在一定条件下通过氢化 LiF+MgB₂ 得到了 LiBH₄.另外,氢化 MgB₂+CaH₂ 可得到 Ca(BH₄),^[22].在本实验中,

放氢产物 NaF, ErB₄ 以及 ErH₂ 在吸氢过程结束后,生 成了 NaBH₄、NaErF₄ 以及一些未知相.一方面说明体系 的吸氢过程复杂,另一方面也说明本体系的放氢产物组 合 NaF, ErB₄ 以及 ErH₂ 是一个可逆的复合体系,实现 了 NaBH₄ 的可逆吸放氢. 该体系出现未知相与 $3LiBH_4/$ (Ce,La)(Cl,F)₃^[15]体系再吸氢后出现少量未知相类 似,目前还在进一步鉴定中. 对第二次放氢后的产物也 进行了 XRD 分析(图 5),发现生成的产物与首次放氢 的一致. 经过 3 次吸放氢循环后,体系的储放氢量未见 明显衰减,表明体系具有较好的吸放氢循环特性.

Fig. 5 XRD pattern of 3NaBH₄/ErF₃ after second dehydrogenation

2.2 可逆吸放氢性能

为了研究复合体系的可逆储氢性能,对其进行了多个温度下的 PCT 测试. 图 6 为 3NaBH₄/ErF₃ 样 品在氢压为 0.05 ~ 4 MPa,平均温度为 413,398,377 和 355 ℃条件下测试的 PCT 曲线,相关数据见 表 2.

■ 355 °C; • 377 °C; ▲ 398 °C; ▼ 413 °C.

Table 2 Data of PCT measurements

	Maximum H	Absorption	Desorption
t∕°C	absorption, mass	plateau	plateau
	fraction ($\%$)	pressure/MPa	pressure/MPa
413	2.74	0. 927	0.355
398	2.78	0.845	0.259
377	2.71	0.74	0.112
355	2.54	0. 53	0.0024

结果表明,在实验温度范围内,体系的放氢平 台压受温度影响较大,而吸氢平台压受温度影响较 小.体系最大的吸氢量为2.78%(质量分数),根据 可逆性=最大吸氢量/TG失重量,计算得可逆性最 高达90.84%.

根据不同温度下体系的 PCT 曲线,利用 van't Hoff 方程,作 lnP 与 1/T 的关系图,结果见图 7. 计 算得吸氢过程焓变 $\Delta_r H = -36.8 \text{ kJ/mol } H_2, \Delta_r S = -53.3 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} H_2; 放氢过程焓变为 <math>\Delta_d H =$ -180.8 kJ/mol H₂, $\Delta_d S = -256.7 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} H_2$. 体系的放氢焓变比文献报道的 NaBH₄ 放氢焓变 188 kJ/mol H₂^[17]和-200 kJ/mol H₂^[21]有所降低. 根据分解温度 $T_{dec} = \Delta H/\Delta S$ 算得 $T_{dec} = 430.8 \text{ °C}$,与 DSC 测得 3NaBH₄/ErF₃ 的分解温度 420 °C 接近.

在 NaBH₄ 可逆储氢性能的改善上, ErF₃ 起到重要作用, 其作用机理与 TiF₃^[16]在 LiBH₄ 分解反应 中的机理类似. 虽然在球磨过程中 ErF₃ 未与 NaBH₄ 反应, 但在加热条件下 ErF₃ 与 NaBH₄ 直接反应生 成 Er 的硼氢化物并迅速发生分解. 与许多稀土硼氢化物^[14,15,19]分解生成稀土硼化物 REB_x、稀土氢化 物 REH₂ 和 H₂ 类似, 体系 3NaBH₄/ErF₃ 分解也生成了 ErB₄, ErH₂ 和 H₂. 因此, 可能的放氢反应方程 式如下:

 $3NaBH_4 + ErF_3 \longrightarrow 3NaF + Er(BH_4)_3 \longrightarrow 3NaF + 3/4ErB_4 + 1/4ErH_2 + 23/4H_2$ (2) 在氢化阶段, NaF 和 ErB₄反应生成 NaBH₄ 和 ErF₃. 由于反应不完全可逆,使得生成的 ErF₃ 和 NaF 反 应生成 NaErF₄. 同时氢化过程中还存在副反应,生成了少量未知相. 在第二次放氢阶段,可能发生如

Fig. 7 Plots of $\ln P_{H_{x}}$ vs. 1/T in hydrogenation(A) and dehydrogenation(B)

下反应:

 $3NaBH_4 + NaErF_4 \longrightarrow 4NaF + Er(BH_4)_3 \longrightarrow 4NaF + (3/4)ErB_4 + (1/4)ErH_2 + (23/4)H_2 (3)$ 所以第二次放氢结束后,体系的分解产物与首次分解产物相同,从而实现了可逆吸放氢.

3 结 论

通过球磨法制备了 3NaBH₄/ErF₃ 复合储氢体系并研究了其可逆储放氢特性. TG-DSC 测试结果表明,该体系放氢温度为 420 ℃,比相同测试条件下 NaBH₄的放氢温度降低了约 100 ℃,总放氢量为 3.06%.体系放氢后生成的 ErB₄, ErH₂和 NaF 是一个可逆复合储氢体系,能在温和条件下吸氢. PCT 性能测试结果显示, 3NaBH₄/ErF₃体系在较低的温度及氢压下即拥有良好的可逆吸放氢性能,最高可 逆吸氢量可达 2.78%.根据范特霍夫方程计算得吸氢过程焓变为–36.8 kJ/mol H₂,放氢过程焓变为–180.8 kJ/mol H₂.因此 ErF₃的添加不仅提高了 NaBH₄ 的储氢热力学性能,而且使其在固态和更温和 的条件下实现了可逆吸放氢.

参考文献

- [1] Schlapbach L., Zuttel A.. Nature [J], 2001, 414(6861): 353-358
- [2] Zuttel A. . Materials Today[J], 2003, 9: 24-33
- [3] Jain I. P. . International Journal of Hydrogen Energy [J], 2009, 34(17): 7368-7378
- [4] REN Xiao(任晓), WANG Xin-Hua(王新华), LI Shou-Quan(李寿权), GE Hong-Wei(葛红卫). Chem. J. Chinese Universities(高 等学校化学学报)[J], 2011, 32(6): 1330—1333
- $[\ 5\]$ Zuttel A. . Naturwissenschaften $[\ J]$, 2004 , 91(4) : 157–172
- [6] Amendola S. C., Onnerud P., Kelly M. T., Petillo P. J., Sharp-Goldman S. L., Binder M.. Journal of Power Sources [J], 1999, 84(1): 130-133
- [7] WANG Gui-Ling(王贵领), CHENG Yuan-Hui(程元徽), ZHANG Wei-Cai(张伟才), LU Tian-Hong(陆天虹), CAO Dian-Xue(曹殿 学), LÜ Yan-Zhuo(吕艳卓), ZHANG Sen(张森). Chem. J. Chinese Universities(高等学校化学学报)[J], 2010, **31**(1): 153-156
- [8] Zuttel A., Wenger P., Rentsch S., Sudan P., Mauron P., Emmenegger C.. Journal of Power Sources[J], 2003, 118(1/2): 1-7
- [9] Ming A., Jurgensen A. R. J. Phys. Chem. B[J], 2006, 110(13): 7062-7067
- [10] Ming A., Jurgensen A. R., Spencer W. A., Anton D. L., Pinkerto F. E., Hwang S. J., Kim C., Bowman R. C. J. Phys. Chem. C[J], 2008, 112(47): 18661—18671
- [11] Garroni S., Pistidda C., Brunelli M., Vaughan G. B. M., Surinach S., Baro M. D.. Scripta Materialia [J], 2009, 60(12): 1129-1132
- [12] Pinkerton F. E., Meyer M. S.. Journal of Alloys and Compounds[J], 2008, 464(1/2): L1-L4
- [13] Mirsaidov U. . International Journal of Hydrogen Energy[J], 2011, 36(1): 1190-1191
- [14] Gennari F. C., Esquivel M. R., Journal of Alloys and Compounds[J], 2009, 485(1/2): 147-L51
- [15] Zhang B. J., Liu B. H., Li Z. P.. Journal of Alloys and Compounds[J], 2011, 509(3): 751-757
- [16] Fang Z. Z., Ma L. P., Kang X. D., Wang P. J., Wang P., Cheng H. M. Applied Physics Letters [J], 2009, 94(4): 044104-1-044104-3
- [17] Urgnani J., Torres F. J., Palumbo M., Baricco M.. International Journal of Hydrogen Energy [J], 2008, 33(12): 3111-3115

- [18] Mauron P., Bielmann M., Remhof A., Zuttel A., Shim J., Whan C. Y., J. Phys. Chem. C[J], 2010, 114(39): 16801–16805
- [19] Andrade-Gamboa J., Puszkiel J. A., Fernandez-Albanesi L., Gennari F. C.. International Journal of Hydrogen Energy [J], 2010, 35(19): 10324—10328
- [20] Gosalawit-Utke R., von Colbe J. M. B., Dornheim M., Jensen T. R., Cerenius Y., Minella C. B., Peschke M., Bormann R. J. Phys. Chem. C[J], 2010, 114(22): 10291—10296
- [21] Martelli P., Caputo R., Remhof A., Mauron P., Borgschulte A., Zuttel A., J. Phys. Chem. C[J], 2010, 114(15): 7173-7177
- [22] Barkhordarian G., Jensen T. R., Doppiu S., Bosenberg U., Borgschulte A., Gremaud R., Cerenius Y., Dornheim M., Klassen T., Bormann R. J. Phys. Chem. C[J], 2008, 112(7): 2743—2749

Synthesis and Hydrogen Sorption Properties of 3NaBH₄/ErF₃ Hydrogen Storage Composite

LI Long-Jin¹, ZOU Jian-Xin^{1*}, ZENG Xiao-Qin^{1,2}, DING Wen-Jiang^{1,2}

(1. National Engineering Research Center of Light Alloy Net Forming,

2. Key State Laboratory of Metal Matrix Composite, School of Materials Science and Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract $3NaBH_4/ErF_3$ hydrogen storage composite was prepared through ball milling method and its phase structure and hydrogen sorption properties were investigated. It is shown that NaBH₄ did not react with ErF₃ during ball milling. The dehydrogenation temperature of the composite, measured by thermo gravimetric-differential scanning calorimetry (TG-DSC), is 420 °C, which is about 100 °C lower than the dehydrogenation temperature of pure NaBH₄. Mass loss of the composite is about 3.06%. Pressure-Composition-Temperature (PCT) tests revealed that the composite has outstanding reversible hydrogen sorption performance at moderate temperatures (355-413 °C) and under quite low hydrogenation plateau pressures (<1 MPa) the maximum hydrogen storage capacity of the composite can reach up to 2. 78%. It was found that NaBH₄ was regenerated during hydrogenation. Based on the PCT analyses, the hydrogenation enthalpy of the composite is determined to be -36.8 kJ/mol H₂, while the dehydrogenation enthalpy is -180.8 kJ/mol H₂. The addition of ErF₃ into NaBH₄ improves the thermodynamic performance of NaBH₄ and forms a reversible hydrogen storage composite. **Keywords** Hydrogen storage material; Rare earth; Borohydride; Reversible hydrogen sorption

(Ed. : N, K, M)