1983

丙二酸亚异丙酯衍生物的构象分析与 分子集团结构适应理论

金松寿 黄 宪 陈振初

(杭州大学化学系)

本文根据 5-取代丙二酸亚异丙酯的核磁共振谱,利用"分子集团 结 构 适 应理论"观点、阐述了5-取代丙二酸亚异丙酯的构象、表明此化合物 一般具 有椅式构象;当取代基中含有芳基及羰基时,显示了这些基团对2~位甲基的远 程屏蔽及远程去屏蔽效应,从而认为此时以船式构象存在。

新近,丙二酸亚异丙酯(1)及其5-取代衍生物(2)及(3)不仅作为重要的有机合成中间 体受到人们的重视,而且对其六元环究竟是椅式构象,还是船式构象至今尚有争议[1]。

$$(1) \sum_{Q=0}^{Q} X \qquad (2) \sum_{R=0}^{Q} X \qquad (3) R = 0$$

本文试图根据 5-取代丙二酸亚异丙酯 (2) 及 (3) 核磁共振谱中 5-位取代基对 2-位 甲基 化学位移的影响,利用"分子集团结构适应理论"观点,对其构象进行分析。

(一) 5-取代丙二酸亚异丙酯的合成及核磁共振谱

按照我们先前提出的方法[2,3] 以及 Wright 等的方法[4]合成了一系列的 5,5-对称 双取代丙二酸亚异丙酯、5,5-不对称双取代丙二酸亚异丙酯及5-单取代丙二酸亚异丙 酯。它们的核磁共振谱分别列于表 1、表 2、表 3中。

通过对 5-取代丙二酸亚异丙酯等的核磁共振谱的研究可知:

- 1. 丙二酸亚异丙酯或5-位具有两个相同取代基的衍生物,2-位两个甲基的六个氢 显示一个单峰。
- 2.5-位有两个不同取代基的衍生物,则2-位两个甲基的六个氢显示相同强度两个 单峰。
- 3.5-位单取代与5-位不对称双取代衍生物情况基本相似,2-位两个甲基的六个氢 显示相同强度的两个单峰。另外,两个单峰化学位移之差 4δ 与取代基的性质有关, 甚 至也会出现一个单峰 ($\Delta\delta = 0$)。
- 4. 若5-取代基中 α-碳上含有芳环,则2-位甲基的化学位移向高磁场方向移动(与 不含芳环的类似物比较)。

5. 若 5-取代基中 α -碳上含有羰基,则 2-位甲基的化学位移向低磁 场 方 向 移 动 (与不含羰基的类似物比较)。

表 1	5,5-对称双取代丙二酸亚异丙酯(2)(R=R')核磁共振谱
7C -	010 1010/2010/10111111111111111111111111	/ / / / / / / / / / / / / / / / / / /

	化 合 物	,,	ATT STANKE AND AND AND ADDRESS
编号	R	分子式	1H-核磁共振谱 δ〔ppm〕 溶剂 CDCl3
1	H	C ₆ H ₈ O ₄	$1.76(s, 6H, \frac{CH_3}{CH_3})C < \frac{O-}{O-}, 3.60(s, 2H, H_2C < \frac{CO}{CO})$
2 <i>a</i>	CH ₃	C ₈ H ₁₂ O ₄	$1.55 \left(s, 6H, \frac{CH_3}{CH_3}\right) C \left(\frac{CO}{CO}\right), 1.65 \left(s, 6H, \frac{CH_3}{CH_3}\right) C \left(\frac{O}{O}\right)$
2 <i>b</i>	C ₂ H ₅	C10H16O4	0.90 (t,6H,CH ₃ CH ₂ -), 1.68 (s,6H, $\frac{\text{CH}_3}{\text{CH}_3}$)
2¢	n-C4H9	C ₁₄ H ₂₄ O ₄	2.01(q.4H, CH ₃ CH ₂ -) 0.80(t,6H,CH ₃ CH ₂ CH ₂ CH ₂ -) 1.24(m.8H,CH ₃ CH ₂ CH ₂ CH ₂ -)
			1.67 $\left(s, 6H, \frac{CH_3}{CH_3}\right) \subset \left(\frac{O}{O}\right)$, 1.92(t, 4H, CH ₃ CH ₂ CH ₂ CH ₂ -)
2 <i>d</i>	PhCH₂	$C_{20}H_{20}O_{4}$	$0.58 \left(s, 6H, \frac{CH_3}{CH_3}\right) C \left(\frac{O}{O}\right), 3.39 \left(s, 4H, PhCH_2 - 1\right).$
2e	p-NO ₂ C ₆ H ₄ CH ₂ -	C ₂₀ H ₁₈ O ₈ N ₂	7.06(s,10H, C_6H_5 -), 0.68(s,6H, CH_3) C O 3.35(s,4H,p-NO ₂ C ₆ H ₄ CH ₂ -)
			7.38(m,4H, $C_6H_4 <$),8.20(m,4H, $C_6H_4 <$).
2 <i>f</i>	H ₅ C ₂ O ₂ CCH ₂ -	$C_{14}H_{20}O_{8}$	1.23(t,6H, CH_3CH_2-),1.92(s,6H, $CH_3 CC_{O-}$)
2 <i>g</i>	PhCOCH ₂ -	C ₂₂ H ₂₀ O 6	$3.08(s,4H, H_5C_2O_2CCH_2-), 4.13(q,4H, CH_3CH_2-)$ $2.12(s,6H, CH_3) C C C C C C C C C C C C C C C C C C C$
			$7.45 \sim 7.82 (m, 10 H, C_6 H_5 -)$

表 2 5,5-不对称双取代丙二酸亚异丙酯(2)(R + R')核磁共振谱

	化 1	令 物	л г -	111 + WILE 14 * * * * * * * * * ODC!
編号	R	R'	分子式	¹ H-核磁共振谱 ð(ppm) 溶剂 CDCl ₃
2 h	PhCH ₂ -	CH ₃	C14H16O4	$0.84(s, 3H, CH_3 -), 1.56(s, 3H, \frac{CH_3}{CH_3}) C < \frac{O-}{O-}$
2i	Рьсн _э —	p-NO ₂ C ₆ H ₄ ·-CH ₂	C ₂₆ H ₁₉ O ₆ N	$1.70 \left(s, 3H, \frac{CH_3}{CH_3} \right) \left(s, 2H, \frac{CH_3}{CH_3} \right) \left(s, 2H, \frac{CH_3}{CH_3} \right) \left(s, 3H, \frac{CH_3}{CH_3} \right) \left(s, 3H, \frac{CH_3}{CH_3} \right) \left(s, 2H, $

2*j* CH₃ CH₃ CH₃ C₁₂H₁₄O₅ 1.25(s,3H,CH₃-),1.64(s,3H,
$$\frac{\text{CH}_3}{\text{CH}_3}$$
 CO_O)

1.67(s,3H, $\frac{\text{CH}_3}{\text{CH}_3}$ CO_O)

3.36(s,2H, $\frac{\text{CH}_2}{\text{CH}_2}$)

6.16(m,2H),7.27(d,1H)

0.78(s,3H, $\frac{\text{CH}_3}{\text{CH}_3}$ CO_O)
0.96(s,3H, $\frac{\text{CH}_3}{\text{CH}_3}$ CO_O)
3.39(s,2H),3.44(s,2H),6.20(m,2H),7.28(m,3H),
8.14(m,2H).

表 3 5-单取代丙二酸亚异丙酯(3)核磁共振谱

1	化 合 物	11 7	(II) 44-746.LL 4= 14t occurs server CDC1
编号	R	分子式	¹ H-核磁共振譜 δ(ppm) 溶剂: CDCl ₃
3а	CH ₃ CH ₂	C ₈ H ₁₂ O ₄	$1.06(t,3H,CH_3CH_2-),1.76(s,3H,\frac{CH_3}{CH_3})C(O-)$
			$1.80 \left(s.3H, \frac{CH_3}{CH_3} \right) \left(\frac{O-}{O-} \right) 2.18(m,2H).3.50(t.1H)$
36	PhCH ₂ -	C12H14O4	$1.71 \left(s, 3H, \frac{CH_3}{CH_3}\right) C \left(\frac{O-}{O-}\right) 1.84 \left(s, 3H, \frac{CH_3}{CH_3}\right) C \left(\frac{O-}{O-}\right)$
	CH ₃		3.48(d,2H,)3.77(t,1H),7.28(m,5H).
30	CH ₃ -C-	C15H18O4	$1.26\left(s,3H,\frac{CH_3}{CH_3}\right)C\left(O\right)$, $1.63\left(s,3H,\frac{CH_3}{CH_3}\right)C\left(O\right)$
	н、		1.69(s,6H,),3.61(s,1H),7.38(m,5H).
3d	CH ₃ -C-	C ₁₄ H ₁₆ O ₄	$1.27 \left(s.3H, \frac{CH_3}{CH_3}\right) C \left(\frac{O}{O}\right), 1.60 \left(s.3H, \frac{CH_3}{CH_3}\right) C \left(\frac{O}{O}\right),$
	Н		1.64(d,3H),3.68(d,1H),3.95(m,1H),7.31(s,5H).
36	(CH ₃) ₂ CH-C- Ph	C ₁₆ H ₂₀ O ₄	$0.74(d,3H), 0.94 \left(s,3H, \frac{CH_3}{CH_3}\right) \left(s,3H, C$
			$1.56(s,3H, \frac{CH_3}{CH_3}) < \frac{O-1}{O-1}, 2.76(m,1H), 3.22(t,1H),$
- }			3.78(d,1H),7.18(m,5H).
3 <i>f</i>	CH ₃ CH ₃ -C-	C ₁₈ H ₂₈ O ₄	$1.20 \left(s,6H,\frac{CH_3}{CH_3}\right) C \left(\frac{C}{C}\right) 1.58 \left(s,3H,\frac{CH_3}{CH_3}\right) C \left(\frac{O}{O}\right)$
			1.67 $\left(s, 3H, \frac{CH_3}{CH_3}\right)$ $\left(\frac{O}{O}\right)$ 2.90 $\left(s, 2H\right)$ 3.10 $\left(s, 1H\right)$
	Н.		7.16(m,5H).
39	Ph-C-	C13H18O4	1.47 $\left(s, 3H, \frac{CH_3}{CH_3}\right) C \left(\frac{O}{O}\right)$ 1.69 $\left(s, 3H, \frac{CH_3}{CH_3}\right) C \left(\frac{O}{O}\right)$
-	- 11		4.29(d,1H),5,31(d,1H),7.24(m,10H).

3h	CH ₃ —C-	C ₁₂ H ₁₄ O ₅	1.44 $\left(\frac{d}{3}H, CH_3 - CH\right)$ 1.60 $\left(\frac{s}{3}H, \frac{CH_3}{CH_3}\right)$ 2.70 $\left(\frac{cH_3}{cH_3}\right)$ 2.80 $\left(\frac{d}{1}H\right)$ 3.80 $\left(\frac{d}{1}H\right)$ 3.94 $\left(\frac{d}{1}H\right)$ 6.
34	H—C—	C ₁₇ H ₁₆ O ₅	6.04(d,1H),6.20(t,1H),7.18(d,1H). 1.45(s,3H, $\frac{CH_3}{CH_3}$ $C \leftarrow 0$), 1.68(s,3H, $\frac{CH_3}{CH_3}$ $C \leftarrow 0$), 4.20(d,1H), 5.20(d,1H), 5.98(d,1H), 6.26(t,1H),
3)	H CH ₃ -C- CH ₃	C ₉ H ₁₄ O ₄	7.10(d.1H).7.30(m.5H) 1.13(d.6H, CH_3 $CH-$).1.72(s.6H, CH_3
3 <i>k</i>	CH ₃ -C-	C10H16O4	$0.90 binom{t, 3H, CH3CH2C-}{1.06 binom{d, 3H, CH3-CH}{1.59 binom{m, 2H, CH3CH2CH}{1.71 binom{s, 6H, CH3-CC-}{0-}}$
31	CH ₃ CH ₃ -C- CH ₃	C ₁₀ H ₁₆ O ₄	2. 44(m,1H),3. 44(d,1H). 1. 17 $\left(s,9H, \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \end{array}\right)$ 1. 70 $\left(s,6H, \begin{array}{c} CH_3 \\ CH_3 \end{array}\right)$ C $\left(s,6H, CH_3 \right)$ C $\left(s,6H, CH_3$

(二) 分析与讨论

核磁共振谱是分子结构的客观反映。而分子的构象与原子或原子集团的非键作用密切有关。新近我们指出"集团之间的作用力具有高度选择性,只有当电效应相互适应、空间结构又相互适应,才能表现出较大的吸引能"[5-6]。现将根据"集团结构适应 理论"的观点,对 5-取代丙二酸亚异丙酯的核磁共振谱和分子构象之间的关系进行深入的探讨。

1. 丙二酸亚异丙酯应具有两种稳定的椅式构象(I_a)及(I_b)(其中 R=R'=H)。由于转环作用非常迅速,可以认为 C_a -位的两个甲基处于相同的状态,亦即 C_a -上的 两个甲基受分子中其它基团的电效应和空间效应的影响是相同的,因此在核磁 共 振 谱 中(见表 1 中的化合物 1), C_a -上的两个甲基显示一个单峰($\delta=1$, 76)。

若 5-位具有两个相同取代基时 (R'=R),由于分子中其它基团对 C_2 -上 的 两个甲基的电效应和空间效应的影响亦是相同的,因此 C_2 -上 的两个甲基亦显示一个单峰 (见表1)。

2. 5-位具有两种不同取代基的丙二酸亚异丙酯 (R = R'), C_2 -位 上 的 两个甲基 虽可通过转环使 a-键与 e-键相互转换,然而它们之间受5-位取代基的电效应和空间效应

的影响却不一样。因此在核磁共振谱中出现两个彼此分开的单峰(见表2)。

3. 5-位具 有一元 取代的丙二酸亚异丙酯 $(R \Rightarrow H, R' \Rightarrow H)$ 应与 5-位具有两种不同取代基的情况类似, C_2 -位的两个甲基亦显示两个单峰(见表 3:3a—3i)。 另外,两个甲基化学位移的差异随取代基的性质而不同,它随 5-位取代基的体阻加大 而 消失,甚至使 C_2 -位 上的两个甲基也显示一个单峰。例如 5-位取代基为仲烷基的衍生物(3,及 3 $_k$),由于仲烷基与环母体连结的碳一碳键自旋能垒较大,两个氢处于对位交义 式构象(II),能量上最为有利。此时两个氢所处的情况与母体丙二酸亚异丙酯(I)中的两个氢类似,即分别处于环的两边,近似于对称结构。因此,对 C_2 -甲基的 影响也应与母体类似,呈现一个单峰。

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

4. 若取代基的 α -位含有苯基时,则 C_2 -位甲基的化学位移要比不含苯基的 类 似物小得多,表明了苯环对 C_2 -位 甲 基的特殊影响。例如比较 3α 及 3d、3j 及 3c 的 δ 值即可看出这种影响。

根据"集团结构适应理论",认为苯环是负电性集团,而一C—H 是 正电集 团,

 C_4 及 C_6 上都带有正电,因此,当两个环内酯基与苯环处于接近于平行平面排列时,集团之间的电效应及空间排布最为适应,此时采取(II)的船式构象能量上最为有利。简表为(IV)。

$$\begin{array}{c} R \\ HCH \\ O \\ O \\ O \end{array}$$

若按这一构象进行分析,显然苯环将对 C_{g} -位 甲 基产生远程屏蔽效 应 $^{(7-8)}$,结果使化学位移向高磁场移动。这正与实验结果一致。

5-(1'-苯基)异丁基取代衍生物 3e 的苯基的远程屏蔽效应更为显著。这是由于(Π)中的 R 基团愈大, 使 苯 环愈倾向与环平面平行所致。

 $(R = CH_3 \ 3d, \delta: 1.60, 1.27; \Delta \delta: 0.33;$

 $R = (CH_3)_2 CH$ 3e, $\delta: 1.56, 0.94; \Delta \delta: 0.62.$

按"集团结构适应理论"观点,呋喃基亦属负电性集团,它应与苯基具有类似的性质,对 C_2 -位甲基产生远程屏蔽效应。例如比较3a与3h,即可看出这种效应的存在。

$$R$$
 CH_3
 R
 CH_3
 CH_3
 CH_3

5. 上述分子内的非键集团选择适应性,可从 5-位取代丙二酸亚异丙酯在苯 溶 液中的核磁共振谱 (9),得到进一步的证实。实验表明,将氘代氯仿溶剂改换成苯作溶剂,5-取代丙二酸亚异丙酯的 C_2 -甲基的化学位移即向高磁场方向移动。例如: 化合物 1、2a、3a 及 3d C_3 -甲基的化学位移如下:

$$_{
m H}^{
m H}>{
m M}$$
 (1) $_{
m CH_3}^{
m CH_3}>{
m M}$ (2a) $_{
m H}^{
m CH_2}>{
m M}$ (3a) $_{
m PhCH}^{
m CH_3}>{
m M}$ (3d) $_{
m PhCH}^{
m CH}>{
m M}$ (3d) $_{
m H}^{
m CDCl_3}$ 中) 1.76 1.60 1.27 $_{
m CDCl_3}$ 中) 0.93 1.13 1.15, 0.88

这正由于具有负电性的自由苯分子与丙二酸亚异丙酯中的 C_3 -位甲基的三氢正集团互相适应、相互作用所致。这种适应状态可看成是瞬时 "络合物"(∇)。此时 C_3 -位的 甲 基正处于苯环的屏蔽区内,使其化学位移向高磁场方向移动。

若将 3a(在苯中)与 3d(在氘氯仿中)的核磁共振谱中 C_2 -上甲基的化学位 移 进行比较,可以发现,在苯溶剂中的影响要比单苯基取代者效应显著。这是由于单苯基取代衍生只能由环的一面发生屏蔽效应,如(Π)式所示,而在苯溶剂中苯分子可由环的两面进行屏蔽。

上述两面远程屏蔽效应可由 5一位具有两个含芳基侧链的衍生物的核磁共振谱所 证实。例如: $2d \cdot 2e \cdot 2i \cdot 2k$ 的 δ 值远比 $2h \cdot 2j$ 的为小。

若单取代基中含有两个芳基,此时因为也只能有一个芳环趋向于平行环平面,因此仅是一个芳环使 C_2 -甲基受到屏蔽,它的化学位移是比较接近于 5-位双取代基中只含有一个芳基的化合物。例如:3g 接近 2h:

6. 若 5-位取代基为羰甲基者如 2f和 2g,则 C_3 -上甲基的化学位移要比不含 羰基的大得多。这种羰基对 C_2 -上甲基的特殊影响是由于羰基中负电性的氧原子接近 C_2 -上甲基的三氢正集团,其优势构象为船式(∇ I)。这样, C_2 -上甲基恰好处于羰基的 去 屏蔽区,因此,显示较大的化学位移。

参考文献

- (1) McNab, H., Chem. Soc. Review, 7, 345 (1978).
- [2] Chen, C.-C. (陈振初) and Huang, X. (黄宪), Synthesis, 452 (1982).
- [3] Huang, X. (黄宪). Chen, C.-C. (陈振初), Wu, Q-L. (吳千里), Tetrahedron Letters, 23 75 (1982).
- (4) Wright, A. D. et al., Tetrahedron Letters, 21 2325 (1979).
- (5) 金松寿, 唐新硕, 杭州大学学报(自然科学版), 3, 53 (1979); 4, 59 (1980),

- [6] 金松寿, 唐新硕, 高等学校化学学报, 2, 77 (1981).
- [7] Silverstein, R. M., Bassler, G. C. and Morrill, T. C., Spectrometric Identification of Organic Compounds, 3rd Ed., 1974.
- [8] 梁晓天,核磁共振(高分辨氢谱的解析和应用),科学出版社,1976年。
- (9) Schuster, I. and Schuster, P., Tetrahedron, 25 199 (1969).

THE CORRELATION BETWEEN THE CONFORMATIONAL ANALYSES OF THE 5-SUBSTITUTED ISOPROPYLIDENE MALONATES AND THE PRINCIPLE OF THE STRUCTURAL ADAPTABILITY

Jin Songshou, Huang Xian and Chen Cheng-chu

(Department of Chemistry, Hangzhou University, Hangzhou)

ABSTRACT

In this paper, the conformation of the 5-substituted isopropylidene malonates was analyzed in detail according to the principle of the structural adaptability for the interreaction between the groups of molecules. The results agreed with their nuclear magnetic resonance spectra.

- (1) It was evident that the isopropylidene malonate had two energetically favoured chair conformations which could rapidly interconvert one another.
- (2) If the 5-substituted group contained aromatic group, such as phenyl, furfyl, the favoured conformation was that the aromatic ring tended to be parallel with the plane containing the two ester-groups. Here the boat conformation might be favourable. Therefore, the long range shielding effect of the aromatic ring toward the 2-methyl group could be shown. It means that the chemical shifts would move to higher magnetic field.
- (8) If the 5-substituted group was a carbonylmethyl group, the oxygen atom in carbonyl group approached to the three hydrogen atoms of the 2-methyl group. At that time a long range deshielding effect of the carbonyl group appeared.